Glass transition and crystallite melting in natural organic matter

[1]  E. LeBoeuf,et al.  Thermal analysis of whole soils and sediment. , 2004, Journal of environmental quality.

[2]  E. LeBoeuf,et al.  Thermodynamic properties of several soil- and sediment-derived natural organic materials. , 2004, Chemosphere.

[3]  J. Pignatello,et al.  Demonstration of the "conditioning effect" in soil organic matter in support of a pore deformation mechanism for sorption hysteresis. , 2002, Environmental Science and Technology.

[4]  A. Piccolo THE SUPRAMOLECULAR STRUCTURE OF HUMIC SUBSTANCES , 2001 .

[5]  K. D. Young,et al.  Glass Transition Behavior in a Peat Humic Acid and an Aquatic Fulvic Acid , 2000 .

[6]  E. LeBoeuf,et al.  Macromolecular Characteristics of Natural Organic Matter. 1. Insights from Glass Transition and Enthalpic Relaxation Behavior , 2000 .

[7]  I. Kögel‐Knabner Analytical approaches for characterizing soil organic matter , 2000 .

[8]  K. Schmidt-Rohr,et al.  Quantitative Characterization of Humic Substances by Solid-State Carbon-13 Nuclear Magnetic Resonance , 2000 .

[9]  G. Schaumann,et al.  Thermal characteristics of soil organic matter measured by DSC: A hint on a glass transition , 2000 .

[10]  K. Schmidt-Rohr,et al.  Poly(methylene) Crystallites in Humic Substances Detected by Nuclear Magnetic Resonance , 2000 .

[11]  J. A. Rice,et al.  Contribution of lipids to the nonlinear sorption of polycyclic aromatic hydrocarbons to soil organic matter , 1999 .

[12]  A. Heredia,et al.  Structure and dynamics of reconstituted cuticular waxes of grape berry cuticle (Vitis vinifera L.) , 1999 .

[13]  J. Pignatello Soil organic matter as a nanoporous sorbent of organic pollutants , 1998 .

[14]  P. Albrecht,et al.  A novel pathway of soil organic matter formation by selective preservation of resistant straight-chain biopolymers: chemical and isotope evidence , 1998 .

[15]  J. Oades,et al.  Comparative organic geochemistries of soils and marine sediments , 1997 .

[16]  E. LeBoeuf,et al.  A distributed reactivity model for sorption by soils and sediments. 8. Sorbent organic domains : Discovery of a humic acid glass transition and an argument for a polymer-based model , 1997 .

[17]  D. Dorset Crystallography of waxes-an electron diffraction study of refined and natural products , 1997 .

[18]  A. Heredia,et al.  The glassy state in isolated cuticles : differential scanning calorimetry of tomato fruit cuticular membranes , 1997 .

[19]  W. Weber,et al.  A Distributed Reactivity Model for Sorption by Soils and Sediments. 4. Intraparticle Heterogeneity and Phase-Distribution Relationships under Nonequilibrium Conditions , 1996 .

[20]  Joseph J. Pignatello,et al.  Mechanisms of Slow Sorption of Organic Chemicals to Natural Particles , 1996 .

[21]  T. Young,et al.  A distributed reactivity model for sorption by soils and sediments. 3. Effects of diagenetic processes on sorption energetics. , 1995, Environmental science & technology.

[22]  I. Kögel‐Knabner,et al.  Occurrence, distribution and fate of the lipid plant biopolymers cutin and suberin in temperate forest soils , 1993 .

[23]  I. Kögel‐Knabner,et al.  Aliphatic components of forest soil organic matter as determined by solid-state 13C NMR and analytical pyrolysis , 1992 .

[24]  M. Schnitzer SOIL ORGANIC MATTER—THE NEXT 75 YEARS , 1991 .

[25]  J. A. Rice,et al.  A model of humin. , 1990 .

[26]  J. A. Rice,et al.  Isolation of humin by liquid-liquid partitioning , 1989 .

[27]  W. Zech,et al.  Distribution pattern of total lipids and lipid fractions in forest humus , 1989 .

[28]  F. Ziegler Changes of lipid content and lipid composition in forest humus layers derived from Norway spruce , 1989 .

[29]  K. Murayama,et al.  Phase structure of lamellar crystalline polyethylene by solid-state high-resolution carbon-13 NMR detection of the crystalline-amorphous interphase , 1986 .

[30]  P. Hatcher,et al.  Use of solid-state 13C NMR in structural studies of humic acids and humin from Holocene sediments☆ , 1980 .

[31]  D. Vanderhart,et al.  Observations in Solid Polyethylenes by Carbon-13 Nuclear Magnetic Resonance with Magic Angle Sample Spinning , 1979 .

[32]  C. Bunn,et al.  The crystal structure of long-chain normal paraffin hydrocarbons. The “shape” of the , 1939 .