Impact of Anthropogenic CO2 on the CaCO3 System in the Oceans

Rising atmospheric carbon dioxide (CO2) concentrations over the past two centuries have led to greater CO2 uptake by the oceans. This acidification process has changed the saturation state ofthe oceans with respect to calcium carbonate (CaCO3) particles. Here we estimate the in situ CaCO3 dissolution rates for the global oceans from total alkalinity and chlorofluorocarbon data, and we also discuss the future impacts of anthropogenic CO2 on CaCO3 shell–forming species. CaCO3 dissolution rates, ranging from 0.003 to 1.2 micromoles per kilogram per year, are observed beginning near the aragonite saturation horizon. The total water column CaCO3 dissolution rate for the global oceans is approximately 0.5 ± 0.2 petagrams of CaCO3-C per year, which is approximately 45 to 65% of the export production of CaCO3.

[1]  R. Feely,et al.  Inorganic carbon in the Indian Ocean: Distribution and dissolution processes , 2002 .

[2]  K. Caldeira,et al.  Oceanography: Anthropogenic carbon and ocean pH , 2003, Nature.

[3]  Christopher B. Field,et al.  The global carbon cycle: integrating humans, climate and the natural world. , 2004 .

[4]  S. Noriki,et al.  Particulate fluxes of carbonate and organic carbon in the ocean. Is the marine biological activity working as a sink of the atmospheric carbon , 1991 .

[5]  P. deMenocal,et al.  Global deep-sea burial rate of calcium carbonate during the last glacial maximum , 1998 .

[6]  Langdon,et al.  Geochemical consequences of increased atmospheric carbon dioxide on coral reefs , 1999, Science.

[7]  Ulf Riebesell,et al.  Reduced calcification of marine plankton in response to increased atmospheric CO2 , 2000, Nature.

[8]  M. Noguer,et al.  Climate change 2001: The scientific basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change , 2002 .

[9]  J. Milliman Production and accumulation of calcium carbonate in the ocean: Budget of a nonsteady state , 1993 .

[10]  P. Brewer Ocean chemistry of the fossil fuel CO2 signal: The haline signal of “business as usual” , 1997 .

[11]  V. Fabry,et al.  Aragonite and magnesian calcite fluxes to the deep Sargasso Sea , 1991 .

[12]  M. Denis,et al.  Response of coccolithophorid Emiliania huxleyi to elevated partial pressure of CO2 under nitrogen limitation , 2003 .

[13]  S. Noriki,et al.  Particulate Flux and Cd/P Ratio of Particulate Material in the Pacific Ocean , 1999 .

[14]  Kitack Lee Global net community production estimated from the annual cycle of surface water total dissolved inorganic carbon , 2001 .

[15]  Jorge L. Sarmiento,et al.  Redfield ratios of remineralization determined by nutrient data analysis , 1994 .

[16]  S. Kanamori,et al.  Calcium-alkalinity relationship in the North Pacific , 1982 .

[17]  J. Milliman,et al.  Neritic and pelagic carbonate sedimentation in the marine environment: ignorance is not bliss , 1996 .

[18]  William M. Balch,et al.  Biologically mediated dissolution of calcium carbonate above the chemical lysocline , 1999 .

[19]  R. Feely,et al.  Calcium carbonate budget in the Atlantic Ocean based on water column inorganic carbon chemistry , 2003 .

[20]  L. Hannah,et al.  Climate change and biodiversity : synergistic impacts , 2003 .

[21]  C. Langdon,et al.  Dependence of calcification on light and carbonate ion concentration for the hermatypic coral Porites compressa , 2001 .

[22]  W. Broecker,et al.  Fate of Fossil Fuel Carbon Dioxide and the Global Carbon Budget , 1979, Science.

[23]  F. Millero Thermodynamics of the carbon dioxide system in the oceans , 1995 .

[24]  Jelle Bijma,et al.  Effect of seawater carbonate concentration on foraminiferal carbon and oxygen isotopes , 1997, Nature.

[25]  M. Rodier,et al.  Export flux of particles at the equator in the western and central Pacific ocean , 1997 .

[26]  S. Barker,et al.  Foraminiferal Calcification Response to Glacial-Interglacial Changes in Atmospheric CO2 , 2002, Science.

[27]  C. Sweeney,et al.  Effect of calcium carbonate saturation state on the calcification rate of an experimental coral reef , 2000 .

[28]  F. Marubini,et al.  Bicarbonate addition promotes coral growth , 1999 .

[29]  Ulf Riebesell,et al.  Decreasing marine biogenic calcification: A negative feedback on rising atmospheric pCO2 , 2001 .

[30]  E. Maier‐Reimer,et al.  Effect of deep-sea sedimentary calcite preservation on atmospheric CO2 concentration , 1994, Nature.

[31]  J.-F. Minster,et al.  Tracers in the Sea , 1982 .

[32]  Hans-Peter Schertl,et al.  Geochim. cosmochim. acta , 1989 .

[33]  Paleoceanography. , 2021, Science.

[34]  Harold R. Pestana Carbonate Sediment Production by Sargassum Epibionts , 1985 .

[35]  Bruce G. Terrell,et al.  National Oceanic and Atmospheric Administration , 2020, Federal Regulatory Guide.

[36]  P. Falkowski,et al.  Postindustrial enhancement of aragonite undersaturation in the upper tropical and subtropical Atlantic Ocean: The role of fossil fuel CO2 , 2004 .

[37]  C. Sweeney,et al.  Global sea-air CO2 flux based on climatological surface ocean pCO2, and seasonal biological and temperature effects , 2002 .

[38]  R. Feely,et al.  In situ calcium carbonate dissolution in the Pacific Ocean , 2002 .