The second visual area in the marmoset monkey: Visuotopic organisation, magnification factors, architectonical boundaries, and modularity

The organisation of the second visual area (V2) in marmoset monkeys was studied by means of extracellular recordings of responses to visual stimulation and examination of myelin‐ and cytochrome oxidase‐stained sections. Area V2 forms a continuous cortical belt of variable width (1–2 mm adjacent to the foveal representation of V1, and 3–3.5 mm near the midline and on the tentorial surface) bordering V1 on the lateral, dorsal, medial, and tentorial surfaces of the occipital lobe. The total surface area of V2 is approximately 100 mm2, or about 50% of the surface area of V1 in the same individuals. In each hemisphere, the receptive fields of V2 neurones cover the entire contralateral visual hemifield, forming an ordered visuotopic representation. As in other simians, the dorsal and ventral halves of V2 represent the lower and upper contralateral quadrants, respectively, with little invasion of the ipsilateral hemifield. The representation of the vertical meridian forms the caudal border of V2, with V1, whereas a field discontinuity approximately coincident with the horizontal meridian forms the rostral border of V2, with other visually responsive areas. The bridge of cortex connecting dorsal and ventral V2 contains neurones with receptive fields centred within 1° of the centre of the fovea. The visuotopy, size, shape and location of V2 show little variation among individuals. Analysis of cortical magnification factor (CMF) revealed that the V2 map of the visual field is highly anisotropic: for any given eccentricity, the CMF is approximately twice as large in the dimension parallel to the V1/V2 border as it is perpendicular to this border. Moreover, comparison of V2 and V1 in the same individuals demonstrated that the representation of the central visual field is emphasised in V2, relative to V1. Approximately half of the surface area of V2 is dedicated to the representation of the central 5° of the visual field. Calculations based on the CMF, receptive field scatter, and receptive field size revealed that the point‐image size measured parallel to the V1/V2 border (2–3 mm) equals the width of a full cycle of cytochrome oxidase stripes in V2, suggesting a close correspondence between physiological and anatomical estimates of the dimensions of modular components in this area. J. Comp. Neurol. 387:547–567, 1997. © 1997 Wiley‐Liss, Inc.

[1]  G. Elston,et al.  The occipitoparietal pathway of the macaque monkey: comparison of pyramidal cell morphology in layer III of functionally related cortical visual areas. , 1997, Cerebral cortex.

[2]  M G Rosa,et al.  Visual field representation in striate and prestriate cortices of a prosimian primate (Galago garnetti). , 1997, Journal of neurophysiology.

[3]  Leslie G. Ungerleider,et al.  Cortical projections of area V2 in the macaque. , 1997, Cerebral cortex.

[4]  B. Lia,et al.  Distribution of neurons projecting to the superior colliculus correlates with thick cytochrome oxidase stripes in macaque visual area V2 , 1997, The Journal of comparative neurology.

[5]  M G Rosa,et al.  Comparison of dendritic fields of layer III pyramidal neurons in striate and extrastriate visual areas of the marmoset: a Lucifer yellow intracellular injection. , 1996, Cerebral cortex.

[6]  M G Rosa,et al.  Visuotopic organisation of striate cortex in the marmoset monkey (Callithrix jacchus) , 1996, The Journal of comparative neurology.

[7]  J. Kaas,et al.  Topographic patterns of V2 cortical connections in macaque monkeys , 1996, The Journal of comparative neurology.

[8]  A. Cowey,et al.  Models of ganglion cell topography in the retina of macaque monkeys and their application to sensory cortical scaling , 1996, Neuroscience.

[9]  B. B. Lee,et al.  Topography of ganglion cells and photoreceptors in the retina of a New World monkey: The marmoset Callithrix jacchus , 1996, Visual Neuroscience.

[10]  A. Goodchild,et al.  Morphology of retinal ganglion cells in a New World monkey, the marmoset Callithrix jacchus , 1996, The Journal of comparative neurology.

[11]  H. Tamura,et al.  Less Segregated Processing of Visual Information in V2 than in V1 of the Monkey Visual Cortex , 1996, The European journal of neuroscience.

[12]  K R Gegenfurtner,et al.  Processing of color, form, and motion in macaque area V2 , 1996, Visual Neuroscience.

[13]  Bb Lee,et al.  Visual responses in the lateral geniculate nucleus of dichromatic and trichromatic marmosets (Callithrix jacchus) , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[14]  W. B. Spatz,et al.  Morphology and connections of neurons in area 17 projecting to the extrastriate areas mt and 19DM and to the superior colliculus in the monkey Callithrix jacchus , 1995, The Journal of comparative neurology.

[15]  M G Rosa,et al.  Visual areas in the dorsal and medial extrastriate cortices of the marmoset , 1995, The Journal of comparative neurology.

[16]  J W Belliveau,et al.  Borders of multiple visual areas in humans revealed by functional magnetic resonance imaging. , 1995, Science.

[17]  D. Ts'o,et al.  Visual topography in primate V2: multiple representation across functional stripes , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[18]  R. Eckhorn,et al.  Stimulus-specific fast oscillations at zero phase between visual areas V1 and V2 of awake monkey. , 1994, Neuroreport.

[19]  M I Sereno,et al.  Analysis of retinotopic maps in extrastriate cortex. , 1994, Cerebral cortex.

[20]  J. B. Levitt,et al.  Receptive fields and functional architecture of macaque V2. , 1994, Journal of neurophysiology.

[21]  J. B. Levitt,et al.  Intrinsic cortical connections in macaque visual area V2: Evidence for interaction between different functional streams , 1994, The Journal of comparative neurology.

[22]  R. Malach,et al.  Relationship between orientation domains, cytochrome oxidase stripes, and intrinsic horizontal connections in squirrel monkey area V2. , 1994, Cerebral cortex.

[23]  R Gattass,et al.  Identification and viuotopic organization of areas PO and POd in Cebus monkey , 1994, The Journal of comparative neurology.

[24]  John M. Allman,et al.  11 – The Functional Organization of Visual Cortex in Owl Monkeys , 1994 .

[25]  J. Pettigrew,et al.  Organization of the second visual area in the megachiropteran bat Pteropus. , 1994, Cerebral cortex.

[26]  R Gattass,et al.  Cortical afferents of visual area MT in the Cebus monkey: Possible homologies between New and old World monkeys , 1993, Visual Neuroscience.

[27]  V. Perry,et al.  The retinal ganglion cell distribution and the representation of the visual field in area 17 of the owl monkey, Aotus trivirgatus , 1993, Visual Neuroscience.

[28]  M G Rosa,et al.  Retinotopic orgarnzation of the primary visual cortex of flying foxes (Pteropus poliocephalus and pteropus scapulatus) , 1993, The Journal of comparative neurology.

[29]  Leslie G. Ungerleider,et al.  The modular organization of projections from areas V1 and V2 to areas V4 and TEO in macaques , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[30]  L A Krubitzer,et al.  The dorsomedial visual area of owl monkeys: Connections, myeloarchitecture, and homologies in other primates , 1993, The Journal of comparative neurology.

[31]  J. Maunsell,et al.  Visual effects of lesions of cortical area V2 in macaques , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[32]  E. Peterhans,et al.  Functional Organization of Area V2 in the Alert Macaque , 1993, The European journal of neuroscience.

[33]  J. B. Levitt,et al.  Comparison of intrinsic connectivity in different areas of macaque monkey cerebral cortex. , 1993, Cerebral cortex.

[34]  Paul Antoine Salin,et al.  Spatial and temporal coherence in cortico-cortical connections: A cross-correlation study in areas 17 and 18 in the cat , 1992, Visual Neuroscience.

[35]  J D Mollon,et al.  The polymorphic photopigments of the marmoset: spectral tuning and genetic basis. , 1992, The EMBO journal.

[36]  B. Boycott,et al.  Retinal ganglion cell density and cortical magnification factor in the primate , 1990, Vision Research.

[37]  R. Desimone,et al.  Spectral properties of V4 neurons in the macaque , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[38]  L A Krubitzer,et al.  Cortical connections of MT in four species of primates: Areal, modular, and retinotopic patterns , 1990, Visual Neuroscience.

[39]  L. Schmued A rapid, sensitive histochemical stain for myelin in frozen brain sections. , 1990, The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society.

[40]  D. C. Essen,et al.  Modular and hierarchical organization of extrastriate visual cortex in the macaque monkey. , 1990, Cold Spring Harbor symposia on quantitative biology.

[41]  C. W. Picanço-Diniz,et al.  Retinal ganglion cell distribution in the cebus monkey: A comparison with the cortical magnification factors , 1989, Vision Research.

[42]  J. Bullier,et al.  Visual activity in area V2 during reversible inactivation of area 17 in the macaque monkey. , 1989, Journal of neurophysiology.

[43]  B. Boycott,et al.  Cortical magnification factor and the ganglion cell density of the primate retina , 1989, Nature.

[44]  R Gattass,et al.  Visual area MT in the Cebus monkey: Location, visuotopic organization, and variability , 1989, The Journal of comparative neurology.

[45]  S. Zeki,et al.  The Organization of Connections between Areas V5 and V2 in Macaque Monkey Visual Cortex , 1989, The European journal of neuroscience.

[46]  J. Kaas,et al.  Cortical integration of parallel pathways in the visual system of primates , 1989, Brain Research.

[47]  R Gattass,et al.  Representation of the visual field in the second visual area in the Cebus monkey , 1988, The Journal of comparative neurology.

[48]  P. Rakic Specification of cerebral cortical areas. , 1988, Science.

[49]  C. Gross,et al.  Visuotopic organization and extent of V3 and V4 of the macaque , 1988, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[50]  E. Switkes,et al.  Functional anatomy of macaque striate cortex. II. Retinotopic organization , 1988, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[51]  A. Cowey,et al.  The lengths of thefibres of henle in the retina of macaque monkeys: Implications for vision , 1988, Neuroscience.

[52]  J. Kaas,et al.  Cortical connections of area 18 and dorsolateral visual cortex in squirrel monkeys , 1988, Visual Neuroscience.

[53]  R Gattass,et al.  Visual topography of V1 in the Cebus monkey , 1987, The Journal of comparative neurology.

[54]  M. Cynader,et al.  Functional topography in cat area 18 , 1987, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[55]  D. V. van Essen,et al.  Processing of color, form and disparity information in visual areas VP and V2 of ventral extrastriate cortex in the macaque monkey , 1986, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[56]  J. Kaas,et al.  Studies on the evolution of multiple somatosensory representations in primates: The organization of anterior parietal cortex in the new world callitrichid, Saguinus , 1986, The Journal of comparative neurology.

[57]  J. Pettigrew Flying primates? Megabats have the advanced pathway from eye to midbrain. , 1986, Science.

[58]  John H. R. Maunsell,et al.  The projections from striate cortex (V1) to areas V2 and V3 in the macaque monkey: Asymmetries, areal boundaries, and patchy connections , 1986, The Journal of comparative neurology.

[59]  A. Cowey,et al.  The ganglion cell and cone distributions in the monkey's retina: Implications for central magnification factors , 1985, Vision Research.

[60]  R B Tootell,et al.  Topography of cytochrome oxidase activity in owl monkey cortex , 1985, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[61]  John H. R. Maunsell,et al.  The visual field representation in striate cortex of the macaque monkey: Asymmetries, anisotropies, and individual variability , 1984, Vision Research.

[62]  D. Hubel,et al.  Anatomy and physiology of a color system in the primate visual cortex , 1984, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[63]  M. Silverman,et al.  Functional organization of the second cortical visual area in primates. , 1983, Science.

[64]  C. Gross,et al.  Visual topography of V2 in the macaque , 1981, The Journal of comparative neurology.

[65]  C. Gross,et al.  Visual topography of striate projection zone (MT) in posterior superior temporal sulcus of the macaque. , 1981, Journal of neurophysiology.

[66]  S. Petersen,et al.  Visual response properties of neurons in four extrastriate visual areas of the owl monkey (Aotus trivirgatus): a quantitative comparison of medial, dorsomedial, dorsolateral, and middle temporal areas. , 1981, Journal of neurophysiology.

[67]  W T Newsome,et al.  Interhemispheric connections of visual cortex in the owl monkey, Aotus trivirgatus, and the bushbaby, Galago senegalensis , 1980, The Journal of comparative neurology.

[68]  J. Maunsell,et al.  Two‐dimensional maps of the cerebral cortex , 1980, The Journal of comparative neurology.

[69]  K. Albus,et al.  Second and third visual areas of the cat: interindividual variability in retinotopic arrangement and cortical location , 1980, The Journal of physiology.

[70]  M. Wong-Riley Changes in the visual system of monocularly sutured or enucleated cats demonstrable with cytochrome oxidase histochemistry , 1979, Brain Research.

[71]  L. Palmer,et al.  Retinotopic organization of areas 18 and 19 in the cat , 1979, The Journal of comparative neurology.

[72]  S. Zeki,et al.  The cortical projections of foveal striate cortex in the rhesus monkey. , 1978, The Journal of physiology.

[73]  D. C. Essen,et al.  The topographic organization of rhesus monkey prestriate cortex. , 1978, The Journal of physiology.

[74]  Jon H. Kaas,et al.  Cortical projections of area 18 in owl monkeys , 1977, Vision Research.

[75]  J M Allman,et al.  Magnification in striate cortex and retinal ganglion cell layer of owl monkey: a quantitative comparison , 1977, Science.

[76]  J. Malpeli,et al.  The effect of striate cortex cooling on area 18 cells in the monkey , 1977, Brain Research.

[77]  S. Zeki,et al.  Simultaneous anatomical demonstration of the representation of the vertical and horizontal meridians in areas V2 and V3 of rhesus monkey visual cortex , 1977, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[78]  C. Blakemore,et al.  Functional organization in the visual cortex of the golden hamster , 1976, The Journal of comparative neurology.

[79]  J. Kaas,et al.  Representation of the visual field on the medial wall of occipital-parietal cortex in the owl monkey. , 1976, Science.

[80]  J. Kaas,et al.  The dorsomedial cortical visual area: a third tier area in the occipital lobe of the owl monkey (Aotus trivirgatus). , 1975 .

[81]  D. Hubel,et al.  Uniformity of monkey striate cortex: A parallel relationship between field size, scatter, and magnification factor , 1974, The Journal of comparative neurology.

[82]  J. Tigges,et al.  Efferent cortico‐cortical fiber connections of area 18 in the squirrel monkey (Saimiri) , 1974, The Journal of comparative neurology.

[83]  J. Kaas,et al.  The organization of the second visual area (V II) in the owl monkey: a second order transformation of the visual hemifield. , 1974, Brain research.

[84]  W. C. Hall,et al.  Visual cortex of the tree shrew (Tupaia glis): architectonic subdivisions and representations of the visual field. , 1972, Brain research.

[85]  J. Kaas,et al.  Representation of the visual field in striate and adjoining cortex of the owl monkey (Aotus trivirgatus). , 1971, Brain research.

[86]  S. Zeki Cortical projections from two prestriate areas in the monkey. , 1971, Brain research.

[87]  W. C. Hall,et al.  Cortical visual areas I and II in the hedgehog: relation between evoked potential maps and architectonic subdivisions. , 1970, Journal of neurophysiology.

[88]  B. Cragg The topography of the afferent projections in the circumstriate visual cortex of the monkey studied by the Nauta method. , 1969, Vision research.

[89]  S. Zeki Representation of central visual fields in prestriate cortex of monkey. , 1969, Brain research.

[90]  J. Ordy,et al.  Visual acuity and ERG-CFF in relation to the morphologic organization of the retina among diurnal and nocturnal primates. , 1968, Vision research.

[91]  D H HUBEL,et al.  RECEPTIVE FIELDS AND FUNCTIONAL ARCHITECTURE IN TWO NONSTRIATE VISUAL AREAS (18 AND 19) OF THE CAT. , 1965, Journal of neurophysiology.

[92]  É. D. L. Tour,et al.  Nouvelles observations concernant l’action du laurylsulfate de sodium sur la paroi et la membrane d’E. coli , 1965 .

[93]  A. Cowey PROJECTION OF THE RETINA ON TO STRIATE AND PRESTRIATE CORTEX IN THE SQUIRREL MONKEY, SAIMIRI SCIUREUS. , 1964, Journal of neurophysiology.