Alterations of the intestinal mucus layer correlate with dysbiosis and immune dysregulation in human Type 1 Diabetes

[1]  P. Santamaria,et al.  Gut Microbial Antigenic Mimicry in Autoimmunity , 2022, Frontiers in Immunology.

[2]  E. Huang,et al.  2. Classification and Diagnosis of Diabetes: Standards of Medical Care in Diabetes-2022. , 2021, Diabetes care.

[3]  Qian Lili,et al.  Clostridium butyricum Induces the Production and Glycosylation of Mucins in HT-29 Cells , 2021, Frontiers in Cellular and Infection Microbiology.

[4]  G. Hansson Mucins and the Microbiome. , 2020, Annual review of biochemistry.

[5]  M. Falcone,et al.  How the Interplay Between the Commensal Microbiota, Gut Barrier Integrity, and Mucosal Immunity Regulates Brain Autoimmunity , 2019, Front. Immunol..

[6]  H. Siljander,et al.  Microbiome and type 1 diabetes , 2019, EBioMedicine.

[7]  F. Sanvito,et al.  Loss of gut barrier integrity triggers activation of islet-reactive T cells and autoimmune diabetes , 2019, Proceedings of the National Academy of Sciences.

[8]  L. Wen,et al.  Altered Gut Microbiota Activate and Expand Insulin B15-23–Reactive CD8+ T Cells , 2019, Diabetes.

[9]  C. Huttenhower,et al.  The human gut microbiome in early-onset type 1 diabetes from the TEDDY study , 2018, Nature.

[10]  O. Cinek,et al.  The bacteriome at the onset of type 1 diabetes: A study from four geographically distant African and Asian countries. , 2018, Diabetes research and clinical practice.

[11]  F. Tinahones,et al.  Gut Microbiota Differs in Composition and Functionality Between Children With Type 1 Diabetes and MODY2 and Healthy Control Subjects: A Case-Control Study , 2018, Diabetes Care.

[12]  Kim-Anh Lê Cao,et al.  Intestinal Metaproteomics Reveals Host-Microbiota Interactions in Subjects at Risk for Type 1 Diabetes , 2018, Diabetes Care.

[13]  Classi fi cation and Diagnosis of Diabetes : Standards of Medical Care in Diabetes d 2019 , 2018 .

[14]  W. D. de Vos,et al.  Distinct fecal and oral microbiota composition in human type 1 diabetes, an observational study , 2017, PloS one.

[15]  K. McCoy,et al.  A Gut Microbial Mimic that Hijacks Diabetogenic Autoreactivity to Suppress Colitis , 2017, Cell.

[16]  James L. Richards,et al.  Gut microbial metabolites limit the frequency of autoimmune T cells and protect against type 1 diabetes , 2017, Nature Immunology.

[17]  Mariella Cuomo,et al.  The Interplay between Defensins and Microbiota in Crohn's Disease , 2017, Mediators of inflammation.

[18]  M. Walker,et al.  Gut microbiota of Type 1 diabetes patients with good glycaemic control and high physical fitness is similar to people without diabetes: an observational study , 2017, Diabetic medicine : a journal of the British Diabetic Association.

[19]  Elizabeth M. Nolan,et al.  Defensins, lectins, mucins, and secretory immunoglobulin A: microbe-binding biomolecules that contribute to mucosal immunity in the human gut , 2016, Critical reviews in biochemistry and molecular biology.

[20]  C. Maffeis,et al.  Association between intestinal permeability and faecal microbiota composition in Italian children with beta cell autoimmunity at risk for type 1 diabetes , 2016, Diabetes/metabolism research and reviews.

[21]  L. Wen,et al.  Microbial antigen mimics activate diabetogenic CD8 T cells in NOD mice , 2016, The Journal of experimental medicine.

[22]  N. Câmara,et al.  Gut microbiota translocation to the pancreatic lymph nodes triggers NOD2 activation and contributes to T1D onset , 2016, The Journal of experimental medicine.

[23]  Xin-Hua Xiao,et al.  Imbalance of Fecal Microbiota at Newly Diagnosed Type 1 Diabetes in Chinese Children , 2016, Chinese medical journal.

[24]  H. Siljander,et al.  The role of the intestinal microbiota in type 1 diabetes mellitus , 2016, Nature Reviews Endocrinology.

[25]  J. Yamamoto-Furusho,et al.  Differential Expression of MUC12, MUC16, and MUC20 in Patients with Active and Remission Ulcerative Colitis , 2015, Mediators of inflammation.

[26]  Yongqing Hou,et al.  Regulation of the Intestinal Barrier Function by Host Defense Peptides , 2015, Front. Vet. Sci..

[27]  F. Bäckhed,et al.  Normalization of Host Intestinal Mucus Layers Requires Long-Term Microbial Colonization. , 2015, Cell host & microbe.

[28]  P. van Endert,et al.  Pancreatic β-Cells Limit Autoimmune Diabetes via an Immunoregulatory Antimicrobial Peptide Expressed under the Influence of the Gut Microbiota. , 2015, Immunity.

[29]  Tommi Vatanen,et al.  The dynamics of the human infant gut microbiome in development and in progression toward type 1 diabetes. , 2015, Cell host & microbe.

[30]  Austin G. Davis-Richardson,et al.  Early Childhood Gut Microbiomes Show Strong Geographic Differences Among Subjects at High Risk for Type 1 Diabetes , 2014, Diabetes Care.

[31]  W. Huber,et al.  Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2 , 2014, Genome Biology.

[32]  V. Théodorou,et al.  Stress disrupts intestinal mucus barrier in rats via mucin O-glycosylation shift: prevention by a probiotic treatment. , 2014, American Journal of Physiology - Gastrointestinal and Liver Physiology.

[33]  K. Brismar,et al.  Markers of innate immune activity in patients with type 1 and type 2 diabetes mellitus and the effect of the anti‐oxidant coenzyme Q10 on inflammatory activity , 2014, Clinical and experimental immunology.

[34]  J. Dekker,et al.  REG3γ-deficient mice have altered mucus distribution and increased mucosal inflammatory responses to the microbiota and enteric pathogens in the ileum , 2013, Mucosal Immunology.

[35]  Derrick E. Wood,et al.  Kraken: ultrafast metagenomic sequence classification using exact alignments , 2014, Genome Biology.

[36]  A. Rudensky,et al.  Metabolites produced by commensal bacteria promote peripheral regulatory T cell generation , 2013, Nature.

[37]  Bihui Huang,et al.  Mucus Enhances Gut Homeostasis and Oral Tolerance by Delivering Immunoregulatory Signals , 2013, Science.

[38]  L. Hooper,et al.  Epithelial antimicrobial defence of the skin and intestine , 2012, Nature Reviews Immunology.

[39]  Hadley Wickham,et al.  Product Plots , 2011, IEEE Transactions on Visualization and Computer Graphics.

[40]  Adam M. Phillippy,et al.  Interactive metagenomic visualization in a Web browser , 2011, BMC Bioinformatics.

[41]  C. King,et al.  Defective Differentiation of Regulatory FoxP3+ T Cells by Small-Intestinal Dendritic Cells in Patients With Type 1 Diabetes , 2011, Diabetes.

[42]  Philip Sutton,et al.  Mucin dynamics and enteric pathogens , 2011, Nature Reviews Microbiology.

[43]  Y. S. Kim,et al.  Intestinal Goblet Cells and Mucins in Health and Disease: Recent Insights and Progress , 2010, Current gastroenterology reports.

[44]  Ian R. Holzman,et al.  Butyrate enhances the intestinal barrier by facilitating tight junction assembly via activation of AMP-activated protein kinase in Caco-2 cell monolayers. , 2009, The Journal of nutrition.

[45]  Hayyoung Lee,et al.  The structural basis of lipopolysaccharide recognition by the TLR4–MD-2 complex , 2009, Nature.

[46]  J. Neu,et al.  The “Perfect Storm” for Type 1 Diabetes , 2008, Diabetes.

[47]  Sefik Alkan,et al.  Gliadin induces an increase in intestinal permeability and zonulin release by binding to the chemokine receptor CXCR3. , 2008, Gastroenterology.

[48]  S. Gendler,et al.  Structure and function of the cell surface (tethered) mucins. , 2008, Annual review of physiology.

[49]  F. Brombacher,et al.  IL-4/IL-13 independent goblet cell hyperplasia in experimental helminth infections , 2008, BMC Immunology.

[50]  R. Paroni,et al.  Increased intestinal permeability precedes clinical onset of type 1 diabetes , 2006, Diabetologia.

[51]  Dario Iafusco,et al.  Zonulin Upregulation Is Associated With Increased Gut Permeability in Subjects With Type 1 Diabetes and Their Relatives , 2006, Diabetes.

[52]  J. Neu,et al.  Changes in Intestinal Morphology and Permeability in the BioBreeding Rat Before the Onset of Type 1 Diabetes , 2005, Journal of pediatric gastroenterology and nutrition.

[53]  J. Morley,et al.  Abnormal intestinal permeability to sugars in diabetes mellitus , 1986, Diabetologia.

[54]  R. Rosa,et al.  Ultrastructural mucosal alterations and increased intestinal permeability in non-celiac, type I diabetic patients. , 2004, Digestive and liver disease : official journal of the Italian Society of Gastroenterology and the Italian Association for the Study of the Liver.

[55]  J. Ilonen,et al.  Immunologic activity in the small intestinal mucosa of pediatric patients with type 1 diabetes. , 2003, Diabetes.

[56]  J. Rossen,et al.  The MUC family: an obituary. , 2002, Trends in biochemical sciences.

[57]  A. Fasano,et al.  Zonulin, a newly discovered modulator of intestinal permeability, and its expression in coeliac disease , 2000, The Lancet.

[58]  K. Dabbagh,et al.  IL-4 induces mucin gene expression and goblet cell metaplasia in vitro and in vivo. , 1999, Journal of immunology.

[59]  J. Hardin,et al.  Increased gastrointestinal permeability is an early lesion in the spontaneously diabetic BB rat. , 1999, American journal of physiology. Gastrointestinal and liver physiology.

[60]  D. Iafusco,et al.  Altered intestinal permeability to mannitol in diabetes mellitus type I. , 1999, Journal of pediatric gastroenterology and nutrition.

[61]  O. Vaarala,et al.  Glutamate Decarboxylase–Reactive Peripheral Blood Lymphocytes From Patients With IDDM Express Gut-Specific Homing Receptor α4β7-Integrin , 1997, Diabetes.

[62]  O. Vaarala,et al.  Glutamate decarboxylase-reactive peripheral blood lymphocytes from patients with IDDM express gut-specific homing receptor alpha4beta7-integrin. , 1997, Diabetes.

[63]  R. Walker,et al.  Sulphation of colonic and rectal mucin in inflammatory bowel disease: reduced sulphation of rectal mucus in ulcerative colitis. , 1992, Clinical science.