On Step-by-Step Complete Decoding Triple-Error-Correcting Binary BCH Codes

According to the properties found in the algebraic complete decoding method for triple-error-correcting binary Bose-Chaudhuri-Hocquenghem (BCH) codes, a step-by-step complete decoding algorithm of this code is presented.

[1]  Cyril Leung,et al.  On the undetected error probability of triple-error-correcting BCH codes , 1991, IEEE Trans. Inf. Theory.

[2]  Elwyn R. Berlekamp,et al.  Algebraic coding theory , 1984, McGraw-Hill series in systems science.

[3]  C. R. P. Hartmann Decoding beyond the BCH bound , 1971 .

[4]  Zygmunt Szwaja,et al.  On step-by-step decoding of the BCH binary codes (Corresp.) , 1967, IEEE Transactions on Information Theory.

[5]  Toby Berger,et al.  Complete decoding of triple-error-correcting binary BCH codes , 1976, IEEE Trans. Inf. Theory.

[6]  Jan E. M. Nilsson,et al.  An algebraic procedure for decoding beyond eBCH , 1996, IEEE Trans. Inf. Theory.

[7]  James L. Massey,et al.  Step-by-step decoding of the Bose-Chaudhuri- Hocquenghem codes , 1965, IEEE Trans. Inf. Theory.

[8]  Shyue-Win Wei VLSI architectures for computing exponentiations, multiplicative inverses, and divisions in GF(2/sup m/) , 1994, Proceedings of IEEE International Symposium on Circuits and Systems - ISCAS '94.

[9]  F. Lemmermeyer Error-correcting Codes , 2005 .

[10]  Shyue-Win Wei,et al.  A high-speed real-time binary BCH decoder , 1993, IEEE Trans. Circuits Syst. Video Technol..

[11]  Carlos R. P. Hartmann A note on the decoding of double-error-correcting binary BCH codes of primitive length (Corresp.) , 1971, IEEE Trans. Inf. Theory.