Modelling of the Sb and N distribution in type II GaAsSb/GaAsN superlattices for solar cell applications

[1]  D. F. Reyes,et al.  Strain-balanced type-II superlattices for efficient multi-junction solar cells , 2016, Scientific Reports.

[2]  Yoshiaki Nakano,et al.  Absorption threshold extended to 1.15 eV using InGaAs/GaAsP quantum wells for over‐50%‐efficient lattice‐matched quad‐junction solar cells , 2016 .

[3]  M. Honkanen,et al.  Determination of composition and energy gaps of GaInNAsSb layers grown by MBE , 2016 .

[4]  D. F. Reyes,et al.  Influence of Sb/N contents during the capping process on the morphology of InAs/GaAs quantum dots , 2016 .

[5]  Martin A. Green,et al.  Solar cell efficiency tables (version 46) , 2015 .

[6]  J. Millunchick,et al.  The influence of growth temperature on Sb incorporation in InAsSb, and the temperature-dependent impact of Bi surfactants , 2014 .

[7]  D. F. Reyes,et al.  GaAsSb/GaAsN short-period superlattices as a capping layer for improved InAs quantum dot-based optoelectronics , 2014 .

[8]  E. Fitzgerald,et al.  Study of a 1 eV GaNAsSb photovoltaic cell grown on a silicon substrate , 2014 .

[9]  V. Grillo,et al.  Quantitative chemical evaluation of dilute GaNAs using ADF STEM: avoiding surface strain induced artifacts. , 2013, Ultramicroscopy.

[10]  Harry A. Atwater,et al.  Towards an optimized all lattice-matched InAlAs/InGaAsP/InGaAs multijunction solar cell with efficiency >50% , 2013 .

[11]  H. Yuen,et al.  High-efficiency multijunction solar cells employing dilute nitrides , 2012 .

[12]  Y. Okada,et al.  Effect of Sb on GaNAs Intermediate Band Solar Cells , 2012, IEEE Journal of Photovoltaics.

[13]  E. Fitzgerald,et al.  Molecular beam epitaxy grown GaNAsSb 1 eV photovoltaic cell , 2011 .

[14]  K. Volz,et al.  Determination of Nitrogen Concentration in Dilute GaNAs by STEM HAADF Z-Contrast Imaging , 2011 .

[15]  Sarah Kurtz,et al.  Multijunction solar cells for conversion of concentrated sunlight to electricity. , 2010, Optics express.

[16]  R. Beanland,et al.  Blocking of indium incorporation by antimony in III–V-Sb nanostructures , 2010, Nanotechnology.

[17]  Eric Tournié,et al.  Interfacial intermixing in InAs/GaSb short-period-superlattices grown by molecular beam epitaxy , 2010 .

[18]  M. Hopkinson,et al.  Role of segregation in InAs/GaAs quantum dot structures capped with a GaAsSb strain-reduction layer , 2009 .

[19]  M. Hopkinson,et al.  Atomic scale high-angle annular dark field STEM analysis of the N configuration in dilute nitrides of GaAs , 2009 .

[20]  J. Merz,et al.  Atomic arrangement and emission properties of GaAs(In, Sb)N quantum wells , 2009 .

[21]  Hao-Hsiung Lin,et al.  Energy gap reduction in dilute nitride GaAsSbN , 2008 .

[22]  Juerg Leuthold,et al.  Influence of InGaAs cap layers with different In concentration on the properties of InGaAs quantum dots , 2008 .

[23]  Vincenzo Grillo,et al.  Influence of the static atomic displacement on atomic resolution Z-contrast imaging , 2008 .

[24]  J. Chazelas,et al.  Effect of growth temperature on defect states of GaAsSbN intrinsic layer in GaAs∕GaAsSbN∕GaAs photodiode for 1.3μm application , 2007 .

[25]  Hao-Hsiung Lin,et al.  Incorporation Behaviors of Group V Elements in GaAsSbN Grown by Gas Source Molecular Beam Epitaxy , 2007, 2007 IEEE 19th International Conference on Indium Phosphide & Related Materials.

[26]  D. Gerthsen,et al.  Influence of surface segregation on the optical properties of semiconductor quantum wells , 2006 .

[27]  F. Glas,et al.  First-principles calculations of 002 structure factors for electron scattering in strained InxGa1−xAs , 2005 .

[28]  Jia Li,et al.  MBE growth and properties of GaAsSbN/GaAs single quantum wells , 2005 .

[29]  U. Zeimer,et al.  Growth of strained GaAsSb layers on GaAs (0 0 1) by MOVPE , 2005 .

[30]  S. Yoon,et al.  Concomitant incorporation of antimony and nitrogen in GaAsSbN lattice-matched to GaAs , 2005 .

[31]  Matematik,et al.  Numerical Methods for Ordinary Differential Equations: Butcher/Numerical Methods , 2005 .

[32]  Gilles Patriarche,et al.  GaInAs/GaAs quantum-well growth assisted by Sb surfactant: Toward 1.3 μm emission , 2004 .

[33]  J. Millunchick,et al.  Intermixing and lateral composition modulation in GaAs/GaSb short period superlattices , 2003 .

[34]  T. E. Lamas,et al.  Influence of indium segregation on the RHEED oscillations during the growth of InGaAs layers on a GaAs(001) surface , 2003 .

[35]  J. Harris,et al.  The role of Sb in the MBE growth of (GaIn)(NAsSb) , 2003 .

[36]  Jean-Michel Chauveau,et al.  Indium content measurements in metamorphic high electron mobility transistor structures by combination of x-ray reciprocal space mapping and transmission electron microscopy , 2003 .

[37]  A. Holmes,et al.  GaAsSb: a novel material for near infrared photodetectors on GaAs substrates , 2002 .

[38]  Mark Hopkinson,et al.  Stranski-Krastanow transition and epitaxial island growth , 2002 .

[39]  L. Largeau,et al.  GaNAsSb: how does it compare with other dilute III-V-nitride alloys? , 2002 .

[40]  Alex Zunger,et al.  Effects of interfacial atomic segregation and intermixing on the electronic properties of InAs/GaSb superlattices , 2002 .

[41]  Jim-Yong Chi,et al.  MBE growth of high-quality GaAsN bulk layers , 2001 .

[42]  V. Grillo,et al.  Simultaneous experimental evaluation of In and N concentrations in InGaAsN quantum wells , 2001 .

[43]  Harper,et al.  Origin of antimony segregation in GaInSb/InAs strained-layer superlattices , 2000, Physical review letters.

[44]  Ludovic Largeau,et al.  Comparison of nitrogen incorporation in molecular-beam epitaxy of GaAsN, GaInAsN, and GaAsSbN , 2000 .

[45]  R. Kaspi,et al.  Compositional abruptness at the InAs-on-GaSb interface: optimizing growth by using the Sb desorption signature , 1999 .

[46]  A. Baraldi,et al.  Composition control of GaSbAs alloys , 1999 .

[47]  M. Ancona,et al.  Modeling of Ge segregation in the limits of zero and infinite surface diffusion , 1997 .

[48]  Ron Kaspi,et al.  Sb-surface segregation and the control of compositional abruptness at the interface , 1997 .

[49]  A. Giuffrida,et al.  Effects of the Elastic Stress Relaxation on the HRTEM Image Contrast of Strained Heterostructures , 1997 .

[50]  G. L. Araújo,et al.  Limiting efficiencies for photovoltaic energy conversion in multigap systems , 1996 .

[51]  K. Evans,et al.  Improved compositional abruptness at the InGaAs on GaAs interface by presaturation with In during molecular‐beam epitaxy , 1995 .

[52]  Xavier Wallart,et al.  KINETIC MODEL OF ELEMENT III SEGREGATION DURING MOLECULAR BEAM EPITAXY OF III-III'-V SEMICONDUCTOR COMPOUNDS , 1995 .

[53]  Ryoichi Ito,et al.  Surface segregation of In atoms during molecular beam epitaxy and its influence on the energy levels in InGaAs/GaAs quantum wells , 1992 .

[54]  Moison,et al.  Surface segregation of third-column atoms in group III-V arsenide compounds: Ternary alloys and heterostructures. , 1989, Physical review. B, Condensed matter.

[55]  J. M. Gibson,et al.  The effects of elastic relaxation on transmission electron microscopy studies of thinned composition-modulated materials , 1986 .

[56]  D. F. Reyes,et al.  Impact of alloyed capping layers on the performance of InAs quantum dot solar cells , 2016 .

[57]  Jorge M. García,et al.  In segregation effects during quantum dot and quantum ring formation on GaAs(001) , 2004, Microelectron. J..