Remnant epitopes, autoimmunity and glycosylation.

[1]  S. Jameson,et al.  Central tolerance: learning self-control in the thymus , 2005, Nature Reviews Immunology.

[2]  P. E. Van den Steen,et al.  Simulation of evolution-selected propeptide by high-throughput selection of a peptidomimetic inhibitor on a capillary DNA sequencer platform. , 2005, Analytical chemistry.

[3]  J. Lohr,et al.  T‐cell tolerance and autoimmunity to systemic and tissue‐restricted self‐antigens , 2005, Immunological reviews.

[4]  P. E. Van den Steen,et al.  Generation of glycosylated remnant epitopes from human collagen type II by gelatinase B. , 2004, Biochemistry.

[5]  J. Myllyharju,et al.  Relevance of Posttranslational Modifications for the Arthritogenicity of Type II Collagen1 , 2004, The Journal of Immunology.

[6]  D. Bourdette,et al.  CD4 T‐cell epitopes of human α B‐crystallin , 2004 .

[7]  G. Opdenakker,et al.  Functional roles and therapeutic targeting of gelatinase B and chemokines in multiple sclerosis , 2003, The Lancet Neurology.

[8]  R. Holmdahl Dissection of the genetic complexity of arthritis using animal models. , 2003, Journal of autoimmunity.

[9]  G. Opdenakker,et al.  A novel rationale for inhibition of gelatinase B in multiple sclerosis: MMP-9 destroys αB-crystallin and generates a promiscuous T cell epitope , 2003, Journal of Neuroimmunology.

[10]  P. E. Van den Steen,et al.  Gelatinase B/matrix metalloproteinase‐9 cleaves interferon‐β and is a target for immunotherapy , 2003 .

[11]  L. Kotra,et al.  N-Glycosylation pattern of the zymogenic form of human matrix metalloproteinase-9. , 2002, Bioorganic chemistry.

[12]  Shigeyoshi Itohara,et al.  The Role of Matrix Metalloproteinase-2 and Matrix Metalloproteinase-9 in Antibody-Induced Arthritis , 2002, The Journal of Immunology.

[13]  B. Arnold Levels of peripheral T cell tolerance. , 2002, Transplant immunology.

[14]  L. Murri,et al.  Discordant effect of IFN-beta1a therapy on anti-IFN antibodies and thyroid disease development in patients with multiple sclerosis. , 2002, Journal of interferon & cytokine research : the official journal of the International Society for Interferon and Cytokine Research.

[15]  C. Janson,et al.  Structure of the C-terminally truncated human ProMMP9, a gelatin-binding matrix metalloproteinase. , 2002, Acta crystallographica. Section D, Biological crystallography.

[16]  L. Fugger,et al.  Predominant selection of T cells specific for the glycosylated collagen type II epitope (263–270) in humanized transgenic mice and in rheumatoid arthritis , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[17]  J. Satsangi,et al.  The genetic jigsaw of inflammatory bowel disease , 2002, Gut.

[18]  Pauline M. Rudd,et al.  Biochemistry and Molecular Biology of Gelatinase B or Matrix Metalloproteinase-9 (MMP-9) , 2002, Critical reviews in biochemistry and molecular biology.

[19]  N. Kalkkinen,et al.  N-glycan structures of matrix metalloproteinase-1 derived from human fibroblasts and from HT-1080 fibrosarcoma cells. , 2001, European journal of biochemistry.

[20]  Jorge R. Oksenberg,et al.  The Influence of the Proinflammatory Cytokine, Osteopontin, on Autoimmune Demyelinating Disease , 2001, Science.

[21]  R. Dwek,et al.  Matrix remodelling enzymes, the protease cascade and glycosylation. , 2001, Biochimica et biophysica acta.

[22]  P. E. Van den Steen,et al.  Gelatinase B: a tuner and amplifier of immune functions. , 2001, Trends in immunology.

[23]  J. Lowe Glycosylation, Immunity, and Autoimmunity , 2001, Cell.

[24]  R. Dwek,et al.  O-glycan analysis of natural human neutrophil gelatinase B using a combination of normal phase-HPLC and online tandem mass spectrometry: implications for the domain organization of the enzyme. , 2000, Biochemistry.

[25]  P. E. Van den Steen,et al.  Structural Characterization of the Catalytic Active Site in the Latent and Active Natural Gelatinase B from Human Neutrophils* , 2000, The Journal of Biological Chemistry.

[26]  P. E. Van den Steen,et al.  Neutrophil gelatinase B potentiates interleukin-8 tenfold by aminoterminal processing, whereas it degrades CTAP-III, PF-4, and GRO-alpha and leaves RANTES and MCP-2 intact. , 2000, Blood.

[27]  R. Sciot,et al.  Resistance of young gelatinase B-deficient mice to experimental autoimmune encephalomyelitis and necrotizing tail lesions. , 1999, The Journal of clinical investigation.

[28]  R. Dwek,et al.  Glycosylation of natural human neutrophil gelatinase B and neutrophil gelatinase B-associated lipocalin. , 1999, Biochemistry.

[29]  G. Schneider,et al.  Structure of human pro-matrix metalloproteinase-2: activation mechanism revealed. , 1999, Science.

[30]  M. Bakkus Ig gene sequences in the study of clonality. , 1999, Pathologie-biologie.

[31]  L. Kappos,et al.  Matrix metalloproteinase-9 (gelatinase B) is selectively elevated in CSF during relapses and stable phases of multiple sclerosis. , 1998, Brain : a journal of neurology.

[32]  P. Libby,et al.  Generation of Biologically Active IL-1β by Matrix Metalloproteinases: A Novel Caspase-1-Independent Pathway of IL-1β Processing , 1998, The Journal of Immunology.

[33]  L Steinman,et al.  Multiple Sclerosis: A Coordinated Immunological Attack against Myelin in the Central Nervous System , 1996, Cell.

[34]  H. Waldmann,et al.  Mechanisms of Peripheral Tolerance and Suppression Induced by Monoclonal Antibodies to CD4 and CD8 , 1996, Immunological reviews.

[35]  J. Todd,et al.  Multifactorial inheritance in type 1 diabetes. , 1995, Trends in genetics : TIG.

[36]  J. Leonard,et al.  Suppression of experimental allergic encephalomyelitis in the Lewis rat by the matrix metalloproteinase inhibitor Ro31-9790 , 1995, Inflammation Research.

[37]  C. Polman,et al.  The small heat-shock protein αB-crystallin as candidate autoantigen in multiple sclerosis , 1995, Nature.

[38]  R. Fridman,et al.  Activation of progelatinase B (MMP-9) by gelatinase A (MMP-2). , 1995, Cancer research.

[39]  Wood,et al.  Matrix metalloproteinases and processing of pro‐TNF‐α , 1995, Journal of leukocyte biology.

[40]  L. Steinman,et al.  Reversal of experimental autoimmune encephalomyelitis with a hydroxamate inhibitor of matrix metalloproteases. , 1994, The Journal of clinical investigation.

[41]  K. Wucherpfennig Autoimmunity in the central nervous system: mechanisms of antigen presentation and recognition. , 1994, Clinical immunology and immunopathology.

[42]  A. H. Drummond,et al.  Processing of tumour necrosis factor-α precursor by metalloproteinases , 1994, Nature.

[43]  R. Holmdahl,et al.  T cell recognition of carbohydrates on type II collagen , 1994, The Journal of experimental medicine.

[44]  R. Dwek,et al.  Recognition of carbohydrate by major histocompatibility complex class I- restricted, glycopeptide-specific cytotoxic T lymphocytes , 1994, The Journal of experimental medicine.

[45]  G. Opdenakker,et al.  Cytokine-regulated proteases in autoimmune diseases. , 1994, Immunology today.

[46]  H. Sengeløv,et al.  Isolation and primary structure of NGAL, a novel protein associated with human neutrophil gelatinase. , 1993, The Journal of biological chemistry.

[47]  G. Opdenakker,et al.  Gelatinase in the cerebrospinal fluid of patients with multiple sclerosis and other inflammatory neurological disorders , 1992, Journal of Neuroimmunology.

[48]  H. Grey,et al.  MHC interaction and T cell recognition of carbohydrates and glycopeptides. , 1992, Journal of immunology.

[49]  S. Weiss,et al.  Proteolytic inactivation of alpha 1-proteinase inhibitor and alpha 1-antichymotrypsin by oxidatively activated human neutrophil metalloproteinases. , 1992, The Journal of biological chemistry.

[50]  J. Enghild,et al.  Matrix metalloproteinase 3 (stromelysin) activates the precursor for the human matrix metalloproteinase 9. , 1992, The Journal of biological chemistry.

[51]  G. Opdenakker,et al.  Purification and identification of 91-kDa neutrophil gelatinase. Release by the activating peptide interleukin-8. , 1991, European journal of biochemistry.

[52]  H. Birkedal‐Hansen,et al.  The cysteine switch: a principle of regulation of metalloproteinase activity with potential applicability to the entire matrix metalloproteinase gene family. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[53]  H. Mcdevitt Discovering the role of the major histocompatibility complex in the immune response. , 2000, Annual review of immunology.

[54]  R. Dwek,et al.  Crystal structures of two H-2Db/glycopeptide complexes suggest a molecular basis for CTL cross-reactivity. , 1999, Immunity.

[55]  S. Amor,et al.  Cell biology of autoimmune diseases. , 1998, International review of cytology.

[56]  G. Schönrich,et al.  Multiple levels of peripheral tolerance. , 1993, Immunology today.

[57]  S. Tonegawa,et al.  Unusual organization and diversity of T-cell receptor a-chain genes , 1985, Nature.