A fast method for a generalized nonlocal elastic model

We develop a numerical method for a generalized nonlocal elastic model, which is expressed as a composition of a Riesz potential operator with a fractional differential operator, by composing a collocation method with a finite difference discretization.By carefully exploring the structure of the coefficient matrix of the numerical method, we develop a preconditioned fast Krylov subspace method, which reduces the computations to ( N log ? N ) per iteration and the memory to O ( N ) . The use of the preconditioner significantly reduces the number of iterations, and the preconditioner can be inverted in O ( N log ? N ) computations. Numerical results show the utility of the method.

[1]  Kun Zhou,et al.  Analysis and Approximation of Nonlocal Diffusion Problems with Volume Constraints , 2012, SIAM Rev..

[2]  I. Podlubny Fractional differential equations , 1998 .

[3]  Fawang Liu,et al.  Stability and convergence of the difference methods for the space-time fractional advection-diffusion equation , 2007, Appl. Math. Comput..

[4]  Raymond H. Chan,et al.  Conjugate Gradient Methods for Toeplitz Systems , 1996, SIAM Rev..

[5]  H. R. Hicks,et al.  Numerical methods for the solution of partial difierential equations of fractional order , 2003 .

[6]  Fawang Liu,et al.  A fast semi-implicit difference method for a nonlinear two-sided space-fractional diffusion equation with variable diffusivity coefficients , 2015, Appl. Math. Comput..

[7]  Hong Wang,et al.  A direct O(N log2 N) finite difference method for fractional diffusion equations , 2010, J. Comput. Phys..

[8]  O. Marichev,et al.  Fractional Integrals and Derivatives: Theory and Applications , 1993 .

[9]  W. Wendland,et al.  A finite element method for some integral equations of the first kind , 1977 .

[10]  Hong Wang,et al.  A fast Galerkin method with efficient matrix assembly and storage for a peridynamic model , 2012, J. Comput. Phys..

[11]  K. Burrage,et al.  A new fractional finite volume method for solving the fractional diffusion equation , 2014 .

[12]  J. Klafter,et al.  The restaurant at the end of the random walk: recent developments in the description of anomalous transport by fractional dynamics , 2004 .

[13]  Hong Wang,et al.  A superfast-preconditioned iterative method for steady-state space-fractional diffusion equations , 2013, J. Comput. Phys..

[14]  M. Meerschaert,et al.  Finite difference approximations for two-sided space-fractional partial differential equations , 2006 .

[15]  Joseph Klafter,et al.  Generalized elastic model yields a fractional Langevin equation description. , 2010, Physical review letters.

[16]  Fawang Liu,et al.  Novel numerical methods for solving the time-space fractional diffusion equation in 2D , 2011 .

[17]  Fawang Liu,et al.  Numerical solution of the space fractional Fokker-Planck equation , 2004 .

[18]  Fawang Liu,et al.  Numerical methods and analysis for a class of fractional advection-dispersion models , 2012, Comput. Math. Appl..

[19]  S. Edwards,et al.  The Theory of Polymer Dynamics , 1986 .

[20]  Robert M. Gray,et al.  Toeplitz and Circulant Matrices: A Review , 2005, Found. Trends Commun. Inf. Theory.

[21]  Hong Wang,et al.  Fast alternating-direction finite difference methods for three-dimensional space-fractional diffusion equations , 2014, J. Comput. Phys..

[22]  Rony Granek,et al.  Membrane dynamics and structure factor , 2002 .

[23]  George C. Hsiao,et al.  A Galerkin collocation method for some integral equations of the first kind , 1980, Computing.

[24]  M. Meerschaert,et al.  Finite difference methods for two-dimensional fractional dispersion equation , 2006 .

[25]  T. Chan An Optimal Circulant Preconditioner for Toeplitz Systems , 1988 .

[26]  A J Bray,et al.  Spatial persistence of fluctuating interfaces. , 2001, Physical review letters.

[27]  Fawang Liu,et al.  A Novel High Order Space-Time Spectral Method for the Time Fractional Fokker-Planck Equation , 2015, SIAM J. Sci. Comput..

[28]  Yousef Saad,et al.  Iterative methods for sparse linear systems , 2003 .

[29]  G. Strang A proposal for toeplitz matrix calculations , 1986 .

[30]  Fawang Liu,et al.  Novel Numerical Methods for Solving the Time-Space Fractional Diffusion Equation in Two Dimensions , 2011, SIAM J. Sci. Comput..

[31]  S. Silling Reformulation of Elasticity Theory for Discontinuities and Long-Range Forces , 2000 .

[32]  Fawang Liu,et al.  A finite volume scheme with preconditioned Lanczos method for two-dimensional space-fractional reaction–diffusion equations , 2014 .

[33]  Hong Wang,et al.  A Fast Finite Difference Method for Two-Dimensional Space-Fractional Diffusion Equations , 2012, SIAM J. Sci. Comput..

[34]  D. Benson,et al.  The fractional‐order governing equation of Lévy Motion , 2000 .

[35]  Hong Wang,et al.  A fast and faithful collocation method with efficient matrix assembly for a two-dimensional nonlocal diffusion model , 2014 .

[36]  V. Ervin,et al.  Variational formulation for the stationary fractional advection dispersion equation , 2006 .