A 5' splice site enhances the recruitment of basal transcription initiation factors in vivo.

[1]  K. Neugebauer,et al.  Cotranscriptional coupling of splicing factor recruitment and precursor messenger RNA splicing in mammalian cells , 2006, Nature Structural &Molecular Biology.

[2]  G. Blobel,et al.  Histone H3 lysine 9 methylation and HP1gamma are associated with transcription elongation through mammalian chromatin. , 2005, Molecular cell.

[3]  Juan P Fededa,et al.  A polar mechanism coordinates different regions of alternative splicing within a single gene. , 2005, Molecular cell.

[4]  K. Neugebauer,et al.  Cotranscriptional spliceosome assembly occurs in a stepwise fashion and requires the cap binding complex. , 2005, Molecular cell.

[5]  S. Lacadie,et al.  Cotranscriptional spliceosome assembly dynamics and the role of U1 snRNA:5'ss base pairing in yeast. , 2005, Molecular cell.

[6]  A. Kornblihtt,et al.  Promoter usage and alternative splicing. , 2005, Current opinion in cell biology.

[7]  D. Bentley,et al.  Rules of engagement: co-transcriptional recruitment of pre-mRNA processing factors. , 2005, Current opinion in cell biology.

[8]  M. Caputi,et al.  A Bidirectional SF2/ASF- and SRp40-Dependent Splicing Enhancer Regulates Human Immunodeficiency Virus Type 1 rev, env, vpu, and nef Gene Expression , 2004, Journal of Virology.

[9]  S. Kameoka,et al.  p54nrb associates with the 5′ splice site within large transcription/splicing complexes , 2004, The EMBO journal.

[10]  Hiroshi Kimura,et al.  U1 snRNA associates with TFIIH and regulates transcriptional initiation , 2002, Nature Structural Biology.

[11]  A. Furger,et al.  Promoter proximal splice sites enhance transcription. , 2002, Genes & development.

[12]  B. Blencowe,et al.  Splicing and transcription-associated proteins PSF and p54nrb/nonO bind to the RNA polymerase II CTD. , 2002, RNA.

[13]  Qiang Zhou,et al.  Stimulatory effect of splicing factors on transcriptional elongation , 2001, Nature.

[14]  A. Kornblihtt,et al.  Antagonistic effects of T‐Ag and VP16 reveal a role for RNA pol II elongation on alternative splicing , 2001, The EMBO journal.

[15]  J. Kjems,et al.  The sequence complementarity between HIV-1 5' splice site SD4 and U1 snRNA determines the steady-state level of an unstable env pre-mRNA. , 2001, RNA.

[16]  A. Greenleaf,et al.  The Splicing Factor, Prp40, Binds the Phosphorylated Carboxyl-terminal Domain of RNA Polymerase II* , 2000, The Journal of Biological Chemistry.

[17]  A. Kornblihtt,et al.  Coupling of transcription with alternative splicing: RNA pol II promoters modulate SF2/ASF and 9G8 effects on an exonic splicing enhancer. , 1999, Molecular cell.

[18]  T. Misteli,et al.  RNA polymerase II targets pre-mRNA splicing factors to transcription sites in vivo. , 1999, Molecular cell.

[19]  D. Reinberg,et al.  Promoter-proximal stalling results from the inability to recruit transcription factor IIH to the transcription complex and is a regulated event. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[20]  J. Goodrich,et al.  Promoter escape limits the rate of RNA polymerase II transcription and is enhanced by TFIIE, TFIIH, and ATP on negatively supercoiled DNA. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[21]  M. Wickens,et al.  The C-terminal domain of RNA polymerase II couples mRNA processing to transcription , 1997, Nature.

[22]  A. Yuryev,et al.  The C-terminal domain of the largest subunit of RNA polymerase II interacts with a novel set of serine/arginine-rich proteins. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[23]  Y. Osheim,et al.  Splice site selection, rate of splicing, and alternative splicing on nascent transcripts. , 1988, Genes & development.

[24]  R. Palmiter,et al.  Introns increase transcriptional efficiency in transgenic mice. , 1988, Proceedings of the National Academy of Sciences of the United States of America.