Dissolution media simulating the proximal canine gastrointestinal tract in the fasted state.

[1]  M. Pikal,et al.  Solubility advantage of amorphous pharmaceuticals, part 3: Is maximum solubility advantage experimentally attainable and sustainable? , 2011, Journal of pharmaceutical sciences.

[2]  H. Kangas,et al.  Use of conventional surfactant media as surrogates for FaSSIF in simulating in vivo dissolution of BCS class II drugs. , 2011, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[3]  A. Müllertz,et al.  Characterising the behaviour of poorly water soluble drugs in the intestine: application of biorelevant media for solubility, dissolution and transport studies , 2010, The Journal of pharmacy and pharmacology.

[4]  Eva Karlsson,et al.  Simulating fasted human intestinal fluids: understanding the roles of lecithin and bile acids. , 2010, Molecular pharmaceutics.

[5]  N. M. Zaki,et al.  A modified physiological BCS for prediction of intestinal absorption in drug discovery. , 2010, Molecular pharmaceutics.

[6]  J. Dressman,et al.  Prediction of blood-brain barrier penetration of poorly soluble drug candidates using surface activity profiling. , 2010, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[7]  J. Dressman,et al.  Modification of gastric pH in the fasted dog , 2010, The Journal of pharmacy and pharmacology.

[8]  Filippos Kesisoglou,et al.  Prediction of food effects on the absorption of celecoxib based on biorelevant dissolution testing coupled with physiologically based pharmacokinetic modeling. , 2009, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[9]  Fasheng Li,et al.  Fed and fasted gastric pH and gastric residence time in conscious beagle dogs. , 2009, Journal of pharmaceutical sciences.

[10]  P Augustijns,et al.  Postprandial evolution in composition and characteristics of human duodenal fluids in different nutritional states. , 2009, Journal of pharmaceutical sciences.

[11]  J. Dressman,et al.  Dissolution Media Simulating Conditions in the Proximal Human Gastrointestinal Tract: An Update , 2008, Pharmaceutical Research.

[12]  O. Almarsson,et al.  Combined use of crystalline salt forms and precipitation inhibitors to improve oral absorption of celecoxib from solid oral formulations. , 2007, Journal of pharmaceutical sciences.

[13]  J. Dressman,et al.  Estimating drug solubility in the gastrointestinal tract. , 2007, Advanced drug delivery reviews.

[14]  Clive G. Wilson,et al.  Low Dose Lipid Formulations: Effects on Gastric Emptying and Biliary Secretion , 2007, Pharmaceutical Research.

[15]  L. Kalantzi,et al.  Estimation of Intragastric Solubility of Drugs: In What Medium? , 2007, Pharmaceutical Research.

[16]  Kiyohiko Sugano,et al.  Oral Absorption of Poorly Water-Soluble Drugs: Computer Simulation of Fraction Absorbed in Humans from a Miniscale Dissolution Test , 2006, Pharmaceutical Research.

[17]  J. Dressman,et al.  Canine Intestinal Contents vs. Simulated Media for the Assessment of Solubility of Two Weak Bases in the Human Small Intestinal Contents , 2006, Pharmaceutical Research.

[18]  Hans Lennernäs,et al.  The Effects of Food on the Dissolution of Poorly Soluble Drugs in Human and in Model Small Intestinal Fluids , 2005, Pharmaceutical Research.

[19]  J. Dressman,et al.  Simulation of fasting gastric conditions and its importance for the in vivo dissolution of lipophilic compounds. , 2005, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[20]  H. K. Cammenga,et al.  The surface tension of aqueous solutions of some atmospheric water-soluble organic compounds , 2004 .

[21]  J. Dressman,et al.  Predicting the precipitation of poorly soluble weak bases upon entry in the small intestine , 2004, The Journal of pharmacy and pharmacology.

[22]  I. Ahmed,et al.  Pharmaceutical challenges in veterinary product development. , 2002, Advanced drug delivery reviews.

[23]  H. Lennernäs,et al.  Oral Drug Absorption: Prediction and Assessment , 2000 .

[24]  S. Higuchi,et al.  Gastric pH profiles of beagle dogs and their use as an alternative to human testing. , 2000, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[25]  P. Luner Wetting properties of bile salt solutions and dissolution media. , 2000, Journal of pharmaceutical sciences.

[26]  R. Löbenberg,et al.  Evaluation of Various Dissolution Media for Predicting In Vivo Performance of Class I and II Drugs , 1998, Pharmaceutical Research.

[27]  H. Lennernäs,et al.  Characterization of Fluids from the Stomach and Proximal Jejunum in Men and Women , 1997, Pharmaceutical Research.

[28]  J. Dressman,et al.  Solubilization and Wetting Effects of Bile Salts on the Dissolution of Steroids , 1991, Pharmaceutical Research.

[29]  J. Dressman,et al.  Upper Gastrointestinal (GI) pH in Young, Healthy Men and Women , 1990, Pharmaceutical Research.

[30]  J. Robinson,et al.  Gastric emptying of liquids in the fasted dog , 1988 .

[31]  J. Dressman,et al.  Comparison of Canine and Human Gastrointestinal Physiology , 1986, Pharmaceutical Research.

[32]  N. Kaniwa,et al.  Evaluation of beagle dogs as an animal model for bioavailability testing of cinnarizine capsules , 1986 .

[33]  G. Amidon,et al.  Comparison of gastrointestinal pH in dogs and humans: implications on the use of the beagle dog as a model for oral absorption in humans. , 1986, Journal of pharmaceutical sciences.

[34]  S. Sarna Cyclic motor activity; migrating motor complex: 1985. , 1985, Gastroenterology.

[35]  S. Schmaltz,et al.  Radiotelemetric determination of gastrointestinal pH in four healthy beagles. , 1985, American journal of veterinary research.

[36]  S. Sarna,et al.  Canine cyclic motor activity of stomach and small bowel: the vagus is not the governor. , 1985, Gastroenterology.

[37]  D. V. Slyke ON THE MEASUREMENT OF BUFFER VALUES AND ON THE RELATIONSHIP OF BUFFER VALUE TO THE DISSOCIATION CONSTANT OF THE BUFFER AND THE CONCENTRATION AND REACTION OF THE BUFFER SOLUTION , 1922 .

[38]  H. Kondo,et al.  Effect of gastric acidity regulation on the gastrointestinal transit time and secretion of gastric fluids in beagle dogs , 2006 .

[39]  D. Greenwood Small intestinalpH and buffer capacity: Implications for dissolution of ionizable compounds. , 1994 .

[40]  J. Dressman,et al.  Animal models for oral drug absorption , 1991 .

[41]  T. Scherstén Formation of lithogenic bile in man. , 1973, Digestion.

[42]  A. Nilsson,et al.  Intestinal digestion and absorption of cholesterol and lecithin in the human. Intubation studies with a fat-soluble reference substance. , 1969, Scandinavian journal of gastroenterology.

[43]  John E. Thomas Physiology of the digestive tract. , 1956, The Medical clinics of North America.