Optical manipulation of Rashba-split 2-dimensional electron gas

[1]  F. V. von Rohr,et al.  Ultrafast dynamics of the surface photovoltage in potassium-doped black phosphorus , 2021, Physical Review B.

[2]  T. Morimoto,et al.  Manipulating long-lived topological surface photovoltage in bulk-insulating topological insulators Bi2Se3 and Bi2Te3 , 2020, npj Quantum Materials.

[3]  P. Haney,et al.  Circular photogalvanic spectroscopy of Rashba splitting in 2D hybrid organic–inorganic perovskite multiple quantum wells , 2020, Nature Communications.

[4]  Shik Shin,et al.  Bidirectional surface photovoltage on a topological insulator , 2019, Physical Review B.

[5]  A. Lanzara,et al.  Tracking surface photovoltage dipole geometry in Bi2Se3 with time-resolved photoemission , 2019, Journal of Statistical Mechanics: Theory and Experiment.

[6]  C. Felser,et al.  Cavity-enhanced high harmonic generation for extreme ultraviolet time- and angle-resolved photoemission spectroscopy. , 2019, The Review of scientific instruments.

[7]  C. Felser,et al.  Cavity-enhanced high harmonic generation for XUV time-resolved ARPES , 2019 .

[8]  A. Damascelli,et al.  Collapse of superconductivity in cuprates via ultrafast quenching of phase coherence , 2017, Nature Materials.

[9]  J. Chu,et al.  Optical Manipulation of Rashba Spin-Orbit Coupling at SrTiO3-Based Oxide Interfaces. , 2017, Nano letters.

[10]  Č. Drašar,et al.  Determination of the energy band gap of Bi2Se3 , 2017, Scientific Reports.

[11]  L. Yashina,et al.  Laser-induced persistent photovoltage on the surface of a ternary topological insulator at room temperature , 2017, 1705.07078.

[12]  J. Sinova,et al.  Concepts of antiferromagnetic spintronics , 2017, 1701.06556.

[13]  A. Fert,et al.  Emergent phenomena induced by spin–orbit coupling at surfaces and interfaces , 2016, Nature.

[14]  I. Shelykh,et al.  Datta-and-Das spin transistor controlled by a high-frequency electromagnetic field , 2016, 1603.01678.

[15]  A. Cavalleri,et al.  An effective magnetic field from optically driven phonons , 2015, Nature Physics.

[16]  J. Fabian,et al.  Graphene on transition-metal dichalcogenides: A platform for proximity spin-orbit physics and optospintronics , 2015, 1506.08954.

[17]  H. Beere,et al.  All-electric all-semiconductor spin field-effect transistors. , 2015, Nature nanotechnology.

[18]  Glendell Jones The Canada Research Chairs Program , 2015 .

[19]  Procolo Lucignano,et al.  Quantum transport in Rashba spin–orbit materials: a review , 2015, Reports on progress in physics. Physical Society.

[20]  Timur K. Kim,et al.  Strongly anisotropic spin-orbit splitting in a two-dimensional electron gas , 2014, 1411.7308.

[21]  I. Androulakis,et al.  Experimental study of the valence band of Bi2Se3 , 2014 .

[22]  Hongtao Yuan,et al.  Generation and electric control of spin-valley-coupled circular photogalvanic current in WSe2. , 2014, Nature nanotechnology.

[23]  B. Iversen,et al.  Surface-dominated transport on a bulk topological insulator. , 2014, Nano letters.

[24]  S. Ulstrup,et al.  Extracting the temperature of hot carriers in time- and angle-resolved photoemission. , 2014, The Review of scientific instruments.

[25]  A. Kemper,et al.  Ultrafast electron dynamics in the topological insulator Bi2Se3 studied by time-resolved photoemission spectroscopy , 2014, 1401.3078.

[26]  J. Sobota,et al.  Electron propagation from a photo-excited surface: implications for time-resolved photoemission , 2013, 1312.1392.

[27]  S. Blugel,et al.  Evidence for a direct band gap in the topological insulator Bi 2Se3 from theory and experiment , 2012, 1210.4477.

[28]  Marco Bianchi,et al.  Robust surface doping of Bi2Se3 by rubidium intercalation. , 2012, ACS nano.

[29]  Shin–ichiro Tanaka Utility and constraint on the use of pump-probe photoelectron spectroscopy for detecting time-resolved surface photovoltage , 2012 .

[30]  Y. Yoshida,et al.  The origin and non-quasiparticle nature of Fermi arcs in Bi2Sr2CaCu2O8+δ , 2012, Nature Physics.

[31]  Y. P. Chen,et al.  Ultrafast surface carrier dynamics in the topological insulator Bi₂Te₃. , 2012, Nano letters.

[32]  R. Arita,et al.  Emergent quantum confinement at topological insulator surfaces , 2012, Nature Communications.

[33]  P. Jarillo-Herrero,et al.  Control over topological insulator photocurrents with light polarization. , 2011, Nature nanotechnology.

[34]  A. Damascelli,et al.  Rashba spin-splitting control at the surface of the topological insulator Bi2Se3. , 2011, Physical review letters.

[35]  B. Iversen,et al.  Coexistence of the topological state and a two-dimensional electron gas on the surface of Bi(2)Se(3). , 2010, Nature communications.

[36]  Ross D. McDonald,et al.  Bulk Fermi surface coexistence with Dirac surface state in Bi 2 Se 3 : A comparison of photoemission and Shubnikov–de Haas measurements , 2010, 1001.4050.

[37]  H. R. Krishnamurthy,et al.  Theoretical description of time-resolved photoemission spectroscopy: application to pump-probe experiments. , 2008, Physical review letters.

[38]  G. Gu,et al.  Emergence of preformed Cooper pairs from the doped Mott insulating state in Bi2Sr2CaCu2O8+δ , 2008, Nature.

[39]  C. McConville,et al.  Nonparabolic coupled Poisson-Schrodinger solutions for quantized electron accumulation layers : Band bending, charge profile, and subbands at InN surfaces , 2008 .

[40]  Ren-Bao Liu,et al.  Proposal for direct measurement of a pure spin current by a polarized light beam. , 2007, Physical review letters.

[41]  S. Shen,et al.  Deduction of pure spin current from the linear and circular spin photogalvanic effect in semiconductor quantum wells , 2006, cond-mat/0612542.

[42]  J. Bisquert,et al.  Determination of spatial charge separation of diffusing electrons by transient photovoltage measurements , 2006 .

[43]  Antoine Georges,et al.  Time evolution of the electronic structure of 1T-TaS2 through the insulator-metal transition. , 2006, Physical review letters.

[44]  E. Rashba Spin–orbit coupling and spin transport , 2005, cond-mat/0507007.

[45]  Higinio Ramos,et al.  A variable-step Numerov method for the numerical solution of the Schrödinger equation , 2005 .

[46]  A. Kirilyuk,et al.  Laser-induced ultrafast spin reorientation in the antiferromagnet TmFeO3 , 2004, Nature.

[47]  Jens Hübner,et al.  Spintronics: Spin Electronics and Optoelectronics in Semiconductors , 2001 .

[48]  L. Kronik,et al.  Surface photovoltage phenomena: theory, experiment, and applications , 1999 .

[49]  Bassani,et al.  Spin-split subbands and magneto-oscillations in III-V asymmetric heterostructures. , 1994, Physical review. B, Condensed matter.

[50]  M. Trott,et al.  Modified Thomas-Fermi approximation a surprisingly good tool for the treatment of semiconductor layer structures including various two-dimensional systems , 1993 .

[51]  S. Jang On the theory of the surface photovoltage technique based on the flat quasi-Fermi level approximation , 1991 .

[52]  S. Datta,et al.  Electronic analog of the electro‐optic modulator , 1990 .

[53]  Robert C. Wolpert,et al.  A Review of the , 1985 .

[54]  E. Rashba,et al.  Properties of a 2D electron gas with lifted spectral degeneracy , 1984 .

[55]  G. Paasch,et al.  A Modified Local Density Approximation. Electron Density in Inversion Layers , 1982 .