Surface Wave Dispersion for a Tunable Grounded Liquid Crystal Substrate Without and With Metasurface on Top

The surface wave dispersion of a grounded layer of liquid crystals (LCs) is investigated by taking into account the inherent electrical reconfigurability of such a material. The spectral dyadic impedance Green’s function of the tunable LC grounded slab is calculated and the dispersion curve of the fundamental mode supported by the structure is presented, showing that the orientation of the optical axis of the LCs modifies the surface wave dispersion curve significantly enough to be applied for surface wave propagation control. Furthermore, it is demonstrated that the presence of an inductive metasurface on top of the LC layer impressively reduces the resonance frequency and increases the sensitivity to the continuous voltage biasing.

[1]  T. Uchida 40 years research and development on liquid crystal displays , 2013, 2013 Twentieth International Workshop on Active-Matrix Flatpanel Displays and Devices (AM-FPD).

[2]  J. Sambles,et al.  Microwave liquid-crystal variable phase grating , 2004 .

[3]  A. Oliner,et al.  Guided waves on sinusoidally-modulated reactance surfaces , 1959 .

[4]  Tie Jun Cui,et al.  Efficient conversion of surface-plasmon-like modes to spatial radiated modes , 2015 .

[5]  Alessandro Toscano,et al.  Spectral electromagnetic modeling of a planar integrated structure with a general grounded anisotropic slab , 1993 .

[6]  Iam-Choon Khoo Liquid Crystals XI , 2007 .

[7]  O. Lehmann Über fliessende Krystalle , 1889 .

[8]  Christophe Fumeaux,et al.  Electrically Tuned Microwave Devices Using Liquid Crystal Technology , 2013 .

[9]  Jang-Kun Song,et al.  Technical evolution of liquid crystal displays , 2009 .

[10]  R. Jakoby,et al.  Liquid Crystal-Reconfigurable Antenna Concepts for Space Applications at Microwave and Millimeter Waves , 2009 .

[11]  R. Cahill,et al.  Design and Measurement of Reconfigurable Millimeter Wave Reflectarray Cells With Nematic Liquid Crystal , 2008, IEEE Transactions on Antennas and Propagation.

[12]  R. Dąbrowski,et al.  Liquid crystal phase shifters at millimeter wave frequencies , 2012 .

[13]  Amit M. Patel,et al.  A Printed Leaky-Wave Antenna Based on a Sinusoidally-Modulated Reactance Surface , 2011, IEEE Transactions on Antennas and Propagation.

[14]  Amit M. Patel,et al.  Transformation Electromagnetics Devices Based on Printed-Circuit Tensor Impedance Surfaces , 2014, IEEE Transactions on Microwave Theory and Techniques.

[15]  H. Kawamoto,et al.  The history of liquid-crystal displays , 2002, Proc. IEEE.

[16]  S. Maci,et al.  Metasurfing: Addressing Waves on Impenetrable Metasurfaces , 2011, IEEE Antennas and Wireless Propagation Letters.

[17]  Nikolaos K. Uzunoglu,et al.  Radiation from a dipole in the proximity of a general anisotropic grounded layer , 1985 .

[18]  O. Karabey Electronic Beam Steering and Polarization Agile Planar Antennas in Liquid Crystal Technology , 2013 .

[19]  D. Sievenpiper,et al.  Scalar and Tensor Holographic Artificial Impedance Surfaces , 2010, IEEE Transactions on Antennas and Propagation.

[20]  Friedrich Reinitzer,et al.  Beiträge zur Kenntniss des Cholesterins , 1888 .

[21]  Stefano Maci,et al.  Flat Optics for Leaky-Waves on Modulated Metasurfaces: Adiabatic Floquet-Wave Analysis , 2016, IEEE Transactions on Antennas and Propagation.

[22]  D. González-Ovejero,et al.  Modulated Metasurface Antennas for Space: Synthesis, Analysis and Realizations , 2015, IEEE Transactions on Antennas and Propagation.

[23]  Richard J. Langley,et al.  Liquid crystal tunable microstrip patch antenna , 2008 .

[24]  C. A. Smith,et al.  A review of liquid crystal display technologies, electronic interconnection and failure analysis , 2008 .

[25]  Marco Sabbadini,et al.  Synthesis of Modulated-Metasurface Antennas With Amplitude, Phase, and Polarization Control , 2016, IEEE Transactions on Antennas and Propagation.

[26]  Mariano Barba,et al.  Accurate and Efficient Modeling to Calculate the Voltage Dependence of Liquid Crystal-Based Reflectarray Cells , 2014, IEEE Transactions on Antennas and Propagation.

[27]  D. González-Ovejero,et al.  Flat Optics for Surface Waves , 2016, IEEE Transactions on Antennas and Propagation.

[28]  Stefano Maci,et al.  Surface Wave Dispersion for Anisotropic Metasurfaces Constituted by Elliptical Patches , 2015, IEEE Transactions on Antennas and Propagation.