Efficient quantum-chemical geometry optimization and the structure of large icosahedral fullerenes

Abstract Geometry optimization is efficient using generalized Gaunt coefficients, which significantly limit the amount of cross differentiation for multi-center integrals of high-angular-momentum solid-harmonic basis sets. The geometries of the most stable C 240 , C 540 , C 960 , C 1500 , and C 2160 icosahedral fullerenes are optimized using analytic density-functional theory, which is parameterized to give the experimental geometry of C 60 . The calculations are all electron, the orbital basis set includes d functions and the exchange-correlation-potential basis set includes f functions. The largest calculation on C 2160 employed about 39000 basis functions.

[1]  J. Boettger,et al.  Local-density-functional study of the fullerenes, graphene and graphite , 1996 .

[2]  G. Scuseria Ab Initio Calculations of Fullerenes , 1996, Science.

[3]  Martin,et al.  Structure and energetics of giant fullerenes: An order-N molecular-dynamics study. , 1996, Physical review. B, Condensed matter.

[4]  Klaus Ruedenberg,et al.  Rotation and Translation of Regular and Irregular Solid Spherical Harmonics , 1973 .

[5]  On the optimal value of α for the Hartree–Fock–Slater method , 2004, cond-mat/0409394.

[6]  Katrina S. Werpetinski,et al.  A NEW GRID-FREE DENSITY-FUNCTIONAL TECHNIQUE : APPLICATION TO THE TORSIONAL ENERGY SURFACES OF ETHANE, HYDRAZINE, AND HYDROGEN PEROXIDE , 1997 .

[7]  Ernst Joachim Weniger,et al.  The spherical tensor gradient operator , 2005, math-ph/0505018.

[8]  B. Dunlap Direct quantum chemical integral evaluation , 2001 .

[9]  Dunlap Three-center Gaussian-type-orbital integral evaluation using solid spherical harmonics. , 1990, Physical review. A, Atomic, molecular, and optical physics.

[10]  John C. Slater,et al.  Quantum Theory of Molecules and Solids , 1951 .

[11]  Yihan Shao,et al.  Efficient evaluation of the Coulomb force in density-functional theory calculations , 2001 .

[12]  B. Dunlap Generalized Gaunt coefficients , 2002 .

[13]  C. Kittel Introduction to solid state physics , 1954 .

[14]  B. Dunlap Symmetry and Degeneracy in Xα and Density Functional Theory , 2007 .

[15]  Brett I. Dunlap,et al.  Angular momentum in molecular quantum mechanical integral evaluation , 2005, Comput. Phys. Commun..

[16]  J. Mintmire,et al.  Local Density Functional Electronic Structures of Three Stable Icosahedral Fullerenes , 1991 .

[17]  John A Pople Quantum Chemical Models (Nobel Lecture). , 1999, Angewandte Chemie.

[18]  R. Pitzer Contribution of atomic orbital integrals to symmetry orbital integrals , 1973 .

[19]  The limitations of Slater's element-dependent exchange functional from analytic density-functional theory. , 2005, The Journal of chemical physics.

[20]  Cook,et al.  Grid-free density-functional technique with analytical energy gradients. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[21]  P. Pulay Improved SCF convergence acceleration , 1982 .

[22]  S. F. Boys Electronic wave functions - I. A general method of calculation for the stationary states of any molecular system , 1950, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[23]  D. Sundholm,et al.  Universal method for computation of electrostatic potentials. , 2005, The Journal of chemical physics.

[24]  Marco Häser,et al.  Auxiliary basis sets to approximate Coulomb potentials , 1995 .

[25]  W. Krätschmer,et al.  Solid C60: a new form of carbon , 1990, Nature.

[26]  S. C. O'brien,et al.  C60: Buckminsterfullerene , 1985, Nature.

[27]  J. Boettger,et al.  All-electron full-potential calculation of the electronic band structure, elastic constants, and equation of state for graphite , 1997 .

[28]  J. Pople,et al.  Self‐consistent molecular orbital methods. XX. A basis set for correlated wave functions , 1980 .

[29]  H. Kroto,et al.  Enthalpies of formation of buckminsterfullerene (C60) and of the parent ions C60+, C602+, C603+ and C60– , 1993 .