The recognizability of sets of graphs is a robust property

Once the set of finite graphs is equipped with an algebra structure (arising from the definition of operations that generalize the concatenation of words), one can define the notion of a recognizable set of graphs in terms of finite congruences. Applications to the construction of efficient algorithms and to the theory of context-free sets of graphs follow naturally. The class of recognizable sets depends on the signature of graph operations. We consider three signatures related respectively to Hyperedge Replacement (HR) context-free graph grammars, to Vertex Replacement (VR) context-free graph grammars, and to modular decompositions of graphs. We compare the corresponding classes of recognizable sets. We show that they are robust in the sense that many variants of each signature (where in particular operations are defined by quantifier-free formulas, a quite flexible framework) yield the same notions of recognizability. We prove that for graphs without large complete bipartite subgraphs, HR-recognizability and VR-recognizability coincide. The same combinatorial condition equates HR-context-free and VR-context-free sets of graphs. Inasmuch as possible, results are formulated in the more general framework of relational structures.

[1]  Bruno Courcelle,et al.  The Monadic Second-Order Logic of Graphs X: Linear Orderings , 1996, Theor. Comput. Sci..

[2]  J. Spencer Ramsey Theory , 1990 .

[3]  Johann A. Makowsky,et al.  Algorithmic uses of the Feferman-Vaught Theorem , 2004, Ann. Pure Appl. Log..

[4]  Pascal Weil,et al.  Algebraic Recognizability of Languages , 2004, MFCS.

[5]  Bruno Courcelle,et al.  The monadic second-order logic of graphs XIV: uniformly sparse graphs and edge set quantifications , 2003, Theor. Comput. Sci..

[6]  Jeremy P. Spinrad,et al.  Modular decomposition and transitive orientation , 1999, Discret. Math..

[7]  Michel Habib,et al.  A New Linear Algorithm for Modular Decomposition , 1994, CAAP.

[8]  Hartmut Ehrig,et al.  Handbook of graph grammars and computing by graph transformation: vol. 3: concurrency, parallelism, and distribution , 1999 .

[9]  Pascal Weil,et al.  Series-parallel languages and the bounded-width property , 2000, Theor. Comput. Sci..

[10]  Grzegorz Rozenberg,et al.  Handbook of Graph Grammars and Computing by Graph Transformations, Volume 1: Foundations , 1997 .

[11]  Dominique Perrin,et al.  Finite Automata , 1958, Philosophy.

[12]  Michael R. Fellows,et al.  Finite automata, bounded treewidth, and well-quasiordering , 1991, Graph Structure Theory.

[13]  Yuri Gurevich,et al.  The Classical Decision Problem , 1997, Perspectives in Mathematical Logic.

[14]  Zolt,et al.  HIGHER DIMENSIONAL AUTOMATA 1 , 2004 .

[15]  Paul D. Seymour,et al.  Approximating clique-width and branch-width , 2006, J. Comb. Theory, Ser. B.

[16]  Wolfgang Wechler,et al.  Universal Algebra for Computer Scientists , 1992, EATCS Monographs on Theoretical Computer Science.

[17]  Wojciech Zielonka,et al.  The Book of Traces , 1995 .

[18]  Bruno Courcelle,et al.  Upper bounds to the clique width of graphs , 2000, Discret. Appl. Math..

[19]  Bruno Courcelle,et al.  An algebraic theory of graph reduction , 1993, JACM.

[20]  S. Feferman,et al.  The first order properties of products of algebraic systems , 1959 .

[21]  Bruno Courcelle,et al.  The Monadic Second-Order Logic of Graphs VII: Graphs as Relational Structures , 1992, Theor. Comput. Sci..

[22]  Bruno Courcelle Recognizable Sets of Graphs, Hypergraphs and Relational Structures: A Survey , 2004, Developments in Language Theory.

[23]  F. Radermacher,et al.  Substitution Decomposition for Discrete Structures and Connections with Combinatorial Optimization , 1984 .

[24]  Bruno Courcelle,et al.  The Monadic Second order Logic of Graphs VI: on Several Representations of Graphs By Relational Structures , 1994, Discret. Appl. Math..

[25]  Bruno Courcelle,et al.  The Monadic Second-Order Logic of Graphs. I. Recognizable Sets of Finite Graphs , 1990, Inf. Comput..

[26]  S. Shelah The monadic theory of order , 1975, 2305.00968.

[27]  J. van Leeuwen,et al.  Theoretical Computer Science , 2003, Lecture Notes in Computer Science.

[28]  Dan A. Simovici Review of "The classical decision problem" by Egon Börger,Erich Grädel and Yuri Gurevich. Springer-Verlag 1997. , 2004, SIGA.

[29]  Bruno Courcelle,et al.  Basic Notions of Universal Algebra for Language Theory and Graph Grammars , 1996, Theor. Comput. Sci..

[30]  Jeremy P. Spinrad,et al.  Linear-time modular decomposition and efficient transitive orientation of comparability graphs , 1994, SODA '94.

[31]  Paulien ten Pas,et al.  Monadic second-order definable text languages , 1997, Theory of Computing Systems.

[32]  Egon Wanke,et al.  k-NLC Graphs and Polynomial Algorithms , 1994, Discret. Appl. Math..

[33]  Bruno Courcelle,et al.  Handle-Rewriting Hypergraph Grammars , 1993, J. Comput. Syst. Sci..

[34]  Bruno Courcelle,et al.  Recognizable sets of graphs: equivalent definitions and closure properties , 1994, Mathematical Structures in Computer Science.

[35]  Pascal Weil,et al.  Rationality in Algebras with a Series Operation , 2002, Inf. Comput..

[36]  Pascal Weil,et al.  On the Logical Definability of Certain Graph and Poset Languages , 2006, J. Autom. Lang. Comb..

[37]  Hans L. Bodlaender A linear time algorithm for finding tree-decompositions of small treewidth , 1993, STOC '93.

[38]  Wolfgang Thomas,et al.  Automata on Infinite Objects , 1991, Handbook of Theoretical Computer Science, Volume B: Formal Models and Sematics.

[39]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[40]  Jesse B. Wright,et al.  Algebraic Automata and Context-Free Sets , 1967, Inf. Control..

[41]  B. Reed,et al.  Polynomial Time Recognition of Clique-Width ≤ 3 Graphs , 2000 .

[42]  Bruno Courcelle Structural Properties of Context-Free Sets of Graphs Generated by Vertex Replacement , 1995, Inf. Comput..

[43]  Bruno Courcelle,et al.  Linear Time Solvable Optimization Problems on Graphs of Bounded Clique-Width , 2000, Theory of Computing Systems.

[44]  Dietrich Kuske,et al.  Regular sets of infinite message sequence charts , 2003, Inf. Comput..

[45]  Zoltán Ésik,et al.  Higher Dimensional Automata , 2002, J. Autom. Lang. Comb..

[46]  Denis Lapoire,et al.  Recognizability Equals Monadic Second-Order Definability for Sets of Graphs of Bounded Tree-Width , 1998, STACS.

[47]  Dietrich Kuske,et al.  Towards a language theory for infinite N-free pomsets , 2003, Theor. Comput. Sci..

[48]  Michael R. Fellows,et al.  Parameterized Complexity , 1998 .

[49]  Bruno Courcelle,et al.  The Expression of Graph Properties and Graph Transformations in Monadic Second-Order Logic , 1997, Handbook of Graph Grammars.

[50]  Martin Grohe,et al.  The complexity of first-order and monadic second-order logic revisited , 2002, Proceedings 17th Annual IEEE Symposium on Logic in Computer Science.

[51]  Udi Rotics,et al.  Polynomial Time Recognition of Clique-Width \le \leq 3 Graphs (Extended Abstract) , 2000, Latin American Symposium on Theoretical Informatics.