Luminescent platinum(II) complexes with functionalized N-heterocyclic carbene or diphosphine selectively probe mismatched and abasic DNA

[1]  C. Che,et al.  Luminescent cyclometalated platinum(II) complex forms emissive intercalating adducts with double-stranded DNA and RNA: differential emissions and anticancer activities. , 2014, Angewandte Chemie.

[2]  Sukaina Rashid,et al.  DNA Mismatch Repair and Oxidative DNA Damage: Implications for Cancer Biology and Treatment , 2014, Cancers.

[3]  M. Teulade‐Fichou,et al.  Finding Needles in a Basestack: Recognition of Mismatched Base Pairs in DNA by Small Molecules , 2014 .

[4]  E. Meggers,et al.  DNA Mismatch Recognition by a Hexacoordinate Silicon Sandwich-Ruthenium Hybrid Complex , 2014 .

[5]  Mitsunobu Nakamura,et al.  Cationic perylenediimide as a specific fluorescent binder to mismatch containing DNA. , 2013, Bioorganic & medicinal chemistry.

[6]  Dik-Lung Ma,et al.  Bioactive luminescent transition-metal complexes for biomedical applications. , 2013, Angewandte Chemie.

[7]  J. Barton,et al.  The path for metal complexes to a DNA target. , 2013, Chemical communications.

[8]  M. Hou,et al.  The structural basis of actinomycin D–binding induces nucleotide flipping out, a sharp bend and a left-handed twist in CGG triplet repeats , 2013, Nucleic acids research.

[9]  J. Barton,et al.  Luminescent properties of ruthenium(II) complexes with sterically expansive ligands bound to DNA defects. , 2012, Inorganic chemistry.

[10]  J. Barton,et al.  Crystal structure of Δ-[Ru(bpy)2dppz]2+ bound to mismatched DNA reveals side-by-side metalloinsertion and intercalation , 2012, Nature Chemistry.

[11]  Ruben Abagyan,et al.  Docking and scoring with ICM: the benchmarking results and strategies for improvement , 2012, Journal of Computer-Aided Molecular Design.

[12]  K. K. Lo,et al.  Applications of luminescent inorganic and organometallic transition metal complexes as biomolecular and cellular probes. , 2012, Dalton transactions.

[13]  P. Dumy,et al.  Double threading through DNA: NMR structural study of a bis-naphthalene macrocycle bound to a thymine–thymine mismatch , 2012, Nucleic acids research.

[14]  P. Murat,et al.  Methods for investigating G-quadruplex DNA/ligand interactions. , 2011, Chemical Society reviews.

[15]  Shuangxi Xing,et al.  One-step synthesis of composite vesicles: Direct polymerization and in situ over-oxidation of thiophene , 2011 .

[16]  Q. Dou,et al.  In vitro and in vivo antitumor activities and DNA binding mode of five coordinated cyclometalated organoplatinum(II) complexes containing biphosphine ligands. , 2011, Journal of medicinal chemistry.

[17]  P. Sadler,et al.  Metal complexes as DNA intercalators. , 2011, Accounts of chemical research.

[18]  C. Che,et al.  Luminescent cyclometalated platinum(II) complexes containing N-heterocyclic carbene ligands with potent in vitro and in vivo anti-cancer properties accumulate in cytoplasmic structures of cancer cells , 2011 .

[19]  C. Leung,et al.  Specific blocking of CREB/DNA binding by cyclometalated platinum(II) complexes. , 2011, Angewandte Chemie.

[20]  A. Ashworth,et al.  Therapeutic Targeting of the DNA Mismatch Repair Pathway , 2010, Clinical Cancer Research.

[21]  Tjerk P. Straatsma,et al.  NWChem: A comprehensive and scalable open-source solution for large scale molecular simulations , 2010, Comput. Phys. Commun..

[22]  Kathryn L Haas,et al.  Application of metal coordination chemistry to explore and manipulate cell biology. , 2009, Chemical reviews.

[23]  C. Che,et al.  Emissive or nonemissive? A theoretical analysis of the phosphorescence efficiencies of cyclometalated platinum(II) complexes. , 2009, Chemistry.

[24]  J. Barton,et al.  Sensitivity of Ru(bpy)2dppz2+ luminescence to DNA defects. , 2009, Inorganic chemistry.

[25]  J. Barton,et al.  A bulky rhodium complex bound to an adenosine-adenosine DNA mismatch: general architecture of the metalloinsertion binding mode. , 2009, Biochemistry.

[26]  Scott D. Cummings,et al.  Platinum complexes of terpyridine: Interaction and reactivity with biomolecules , 2009 .

[27]  Timothy J. Kinsella,et al.  Coordination of DNA Mismatch Repair and Base Excision Repair Processing of Chemotherapy and Radiation Damage for Targeting Resistant Cancers , 2009, Clinical Cancer Research.

[28]  Dik‐Lung Ma,et al.  Platinum(II) complexes with dipyridophenazine ligands as human telomerase inhibitors and luminescent probes for G-quadruplex DNA. , 2009, Journal of the American Chemical Society.

[29]  A. Ono,et al.  Specific interactions between silver(I) ions and cytosine-cytosine pairs in DNA duplexes. , 2008, Chemical communications.

[30]  F. Gao,et al.  DNA Binding, Photocleavage, and Topoisomerase Inhibition of Functionalized Ruthenium(II)‐Polypyridine Complexes , 2008, Chemistry & biodiversity.

[31]  J. Barton,et al.  Targeting abasic sites and single base bulges in DNA with metalloinsertors. , 2008, Journal of the American Chemical Society.

[32]  J. Barton,et al.  Metallo-intercalators and metallo-insertors. , 2007, Chemical communications.

[33]  J. Barton,et al.  Insertion of a bulky rhodium complex into a DNA cytosine-cytosine mismatch: an NMR solution study. , 2007, Journal of the American Chemical Society.

[34]  A. Rodger,et al.  Synthetic metallomolecules as agents for the control of DNA structure. , 2007, Chemical Society reviews.

[35]  J. Barton,et al.  Insights into finding a mismatch through the structure of a mispaired DNA bound by a rhodium intercalator , 2007, Proceedings of the National Academy of Sciences.

[36]  D. Truhlar,et al.  A new local density functional for main-group thermochemistry, transition metal bonding, thermochemical kinetics, and noncovalent interactions. , 2006, The Journal of chemical physics.

[37]  J. Barton,et al.  A mismatch-selective bifunctional rhodium-Oregon Green conjugate: a fluorescent probe for mismatched DNA. , 2006, Journal of the American Chemical Society.

[38]  P. Modrich,et al.  DNA mismatch repair: functions and mechanisms. , 2006, Chemical reviews.

[39]  C. Yuan,et al.  Study on the Binding of Base-Mismatched Oligonucleotide d(GCGAGC)2 by Cobalt(III) Complexes , 2005 .

[40]  Masaki Mishima,et al.  Small-molecule ligand induces nucleotide flipping in (CAG)n trinucleotide repeats , 2005, Nature chemical biology.

[41]  J. SantaLucia,et al.  The thermodynamics of DNA structural motifs. , 2004, Annual review of biophysics and biomolecular structure.

[42]  J. Lehn,et al.  DNA Mismatch‐Specific Base Flipping by a Bisacridine Macrocycle , 2003, Chembiochem : a European journal of chemical biology.

[43]  C. Carlson,et al.  Recognition of double-stranded RNA by proteins and small molecules. , 2003, Biopolymers.

[44]  Jim A. Thomas,et al.  Kinetically inert transition metal complexes that reversibly bind to DNA. , 2003, Chemical Society reviews.

[45]  S. Chou,et al.  Solution structure of the ActD-5'-CCGTT3GTGG-3' complex: drug interaction with tandem G.T mismatches and hairpin loop backbone. , 2003, Nucleic acids research.

[46]  K. Loeb,et al.  Multiple mutations and cancer , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[47]  K. Nakatani,et al.  Recognition of guanine-guanine mismatches by the dimeric form of 2-amino-1,8-naphthyridine. , 2001, Journal of the American Chemical Society.

[48]  J. Hoeijmakers Genome maintenance mechanisms for preventing cancer , 2001, Nature.

[49]  Benjamin A. DeGraff,et al.  Applications of Luminescent Transition Platinum Group Metal Complexes to Sensor Technology and Molecular Probes , 2001 .

[50]  C. Che,et al.  Platinum(II) Complexes of Dipyridophenazine as Metallointercalators for DNA and Potent Cytotoxic Agents against Carcinoma Cell Lines , 1999 .

[51]  A. Wang,et al.  Imidazole-imidazole pair as a minor groove recognition motif for T:G mismatched base pairs. , 1999, Nucleic acids research.

[52]  D. Odom,et al.  Recognition and reaction of metallointercalators with DNA. , 1999, Chemical reviews.

[53]  J. Barton,et al.  A versatile mismatch recognition agent: specific cleavage of a plasmid DNA at a single base mispair. , 1999, Biochemistry.

[54]  T. Hambley van der Waals Radii of Pt(II) and Pd(II) in Molecular Mechanics Models and an Analysis of Their Relevance to the Description of Axial M.H(-C), M.H(-N), M.S, and M.M (M = Pd(II) or Pt(II)) Interactions. , 1998, Inorganic chemistry.

[55]  R. Lothe,et al.  Microsatellite instability in human solid tumors. , 1997, Molecular medicine today.

[56]  M. Moyer,et al.  NCM460, a normal human colon mucosal epithelial cell line , 1996, In Vitro Cellular & Developmental Biology - Animal.

[57]  P. Kollman,et al.  A Second Generation Force Field for the Simulation of Proteins, Nucleic Acids, and Organic Molecules , 1995 .

[58]  Sajeev P. Cherian,et al.  Human chromosome 3 corrects mismatch repair deficiency and microsatellite instability and reduces N-methyl-N'-nitro-N-nitrosoguanidine tolerance in colon tumor cells with homozygous hMLH1 mutation. , 1994, Cancer research.

[59]  S. Lippard,et al.  Metallointercalation reagents. 2-hydroxyethanethiolato(2,2',2'-terpyridine)-platinum(II) monocation binds strongly to DNA by intercalation. , 1974, Proceedings of the National Academy of Sciences of the United States of America.

[60]  P. C. Hariharan,et al.  The influence of polarization functions on molecular orbital hydrogenation energies , 1973 .

[61]  I. Ial,et al.  Nature Communications , 2010, Nature Cell Biology.

[62]  K. Tindall,et al.  Mutation rate at the hprt locus in human cancer cell lines with specific mismatch repair-gene defects. , 1997, Carcinogenesis.

[63]  W. R. Wadt,et al.  Ab initio effective core potentials for molecular calculations. Potentials for K to Au including the outermost core orbitals , 1985 .