A fast algorithm for well-spaced points and approximate delaunay graphs

We present a new algorithm that produces a well-spaced superset of points conforming to a given input set in any dimension with guaranteed optimal output size. We also provide an approximate Delaunay graph on the output points. Our algorithm runs in expected time O(2O(d)(n log n + m)), where n is the input size, m is the output point set size, and d is the ambient dimension. The constants only depend on the desired element quality bounds. To gain this new efficiency, the algorithm approximately maintains the Voronoi diagram of the current set of points by storing a superset of the Delaunay neighbors of each point. By retaining quality of the Voronoi diagram and avoiding the storage of the full Voronoi diagram, a simple exponential dependence on d is obtained in the running time. Thus, if one only wants the approximate neighbors structure of a refined Delaunay mesh conforming to a set of input points, the algorithm will return a size 2O(d)m graph in 2O(d)(n log n + m) expected time. If m is superlinear in n, then we can produce a hierarchically well-spaced superset of size 2O(d)n in 2O(d)n log n expected time.

[1]  Steve Oudot,et al.  Topological inference via meshing , 2010, SoCG '10.

[2]  Tamal K. Dey,et al.  Delaunay Mesh Generation , 2012, Chapman and Hall / CRC computer and information science series.

[3]  S. Teng,et al.  On the Radius-Edge Condition in the Control Volume Method , 1999 .

[4]  Jonathan Richard Shewchuk,et al.  Triangle: Engineering a 2D Quality Mesh Generator and Delaunay Triangulator , 1996, WACG.

[5]  Gary L. Miller,et al.  Sparse Voronoi Refinement , 2006, IMR.

[6]  L. Paul Chew,et al.  Guaranteed-Quality Triangular Meshes , 1989 .

[7]  Hang Si,et al.  TetGen: A quality tetrahedral mesh generator and a 3D Delaunay triangulator (Version 1.5 --- User's Manual) , 2013 .

[8]  L. Lovász,et al.  Geometric Algorithms and Combinatorial Optimization , 1981 .

[9]  Jean-Daniel Boissonnat,et al.  Incremental construction of the delaunay triangulation and the delaunay graph in medium dimension , 2009, SCG '09.

[10]  Ernst P. Mücke,et al.  Fast randomized point location without preprocessing in two- and three-dimensional Delaunay triangulations , 1996, SCG '96.

[11]  Jim Ruppert,et al.  A Delaunay Refinement Algorithm for Quality 2-Dimensional Mesh Generation , 1995, J. Algorithms.

[12]  Jiri Matousek,et al.  Lectures on discrete geometry , 2002, Graduate texts in mathematics.

[13]  Robin Sibson,et al.  Computing Dirichlet Tessellations in the Plane , 1978, Comput. J..

[14]  Gary L. Miller,et al.  Beating the spread: time-optimal point meshing , 2011, SoCG '11.

[15]  Sariel Har-Peled,et al.  Fast construction of nets in low dimensional metrics, and their applications , 2004, SCG.

[16]  Don Sheehy,et al.  New Bounds on the Size of Optimal Meshes , 2012, Comput. Graph. Forum.

[17]  Kenneth L. Clarkson,et al.  Building triangulations using epsilon-nets. , 2006, STOC 2006.

[18]  Kenneth L. Clarkson,et al.  Building triangulations using ε-nets , 2006, STOC '06.

[19]  G. Miller,et al.  Mesh generation and geometric persistent homology , 2011 .