A posteriori error estimates for domain decomposition methods

Nowadays, a posteriori error control methods have formed a new important part of the numerical analysis. Their purpose is to obtain computable error estimates in various norms and error indicators that show distributions of global and local errors of a particular numerical solution. In this paper, we focus on a particular class of domain decomposition methods (DDM), which are among the most efficient numerical methods for solving PDEs. We adapt functional type a posteriori error estimates and construct a special form of error majorant which allows efficient error control of approximations computed via these DDM by performing only subdomain-wise computations. The presented guaranteed error bounds use an extended set of admissible fluxes which arise naturally in DDM.

[1]  Jinchao Xu,et al.  The method of alternating projections and the method of subspace corrections in Hilbert space , 2002 .

[2]  Johannes Kraus,et al.  Additive Schur Complement Approximation and Application to Multilevel Preconditioning , 2012, SIAM J. Sci. Comput..

[3]  Svetozar Margenov,et al.  Auxiliary Space Multigrid Method Based on Additive Schur Complement Approximation for Graph Laplacian , 2017, 1708.05738.

[4]  Ludmil T. Zikatanov,et al.  Preconditioning Heterogeneous H(div) Problems by Additive Schur Complement Approximation and Applications , 2016, SIAM J. Sci. Comput..

[5]  Tarek P. Mathew,et al.  Domain Decomposition Methods for the Numerical Solution of Partial Differential Equations , 2008, Lecture Notes in Computational Science and Engineering.

[6]  Dietrich Braess,et al.  Equilibrated residual error estimator for edge elements , 2007, Math. Comput..

[7]  P. Vassilevski Multilevel Block Factorization Preconditioners: Matrix-based Analysis and Algorithms for Solving Finite Element Equations , 2008 .

[8]  Sergey I. Repin,et al.  A posteriori error estimation for variational problems with uniformly convex functionals , 2000, Math. Comput..

[9]  D. Rixen,et al.  FETI‐DP: a dual–primal unified FETI method—part I: A faster alternative to the two‐level FETI method , 2001 .

[10]  Wolfgang Hackbusch,et al.  Multi-grid methods and applications , 1985, Springer series in computational mathematics.

[11]  D. Kelly,et al.  The self‐equilibration of residuals and complementary a posteriori error estimates in the finite element method , 1984 .

[12]  Rüdiger Verführt,et al.  A review of a posteriori error estimation and adaptive mesh-refinement techniques , 1996, Advances in numerical mathematics.

[13]  J. Mandel,et al.  Adaptive selection of face coarse degrees of freedom in the BDDC and the FETI-DP iterative substructuring methods , 2007 .

[14]  J. Mandel,et al.  An algebraic theory for primal and dual substructuring methods by constraints , 2005 .

[15]  J. Pasciak,et al.  Convergence estimates for product iterative methods with applications to domain decomposition , 1991 .

[16]  H. Schwarz Ueber einige Abbildungsaufgaben. , 1869 .

[17]  J. Mandel Balancing domain decomposition , 1993 .

[18]  L. Kantorovich,et al.  Approximate methods of higher analysis , 1960 .

[19]  CLARK R. DOHRMANN,et al.  A Preconditioner for Substructuring Based on Constrained Energy Minimization , 2003, SIAM J. Sci. Comput..

[20]  Clark R. Dohrmann,et al.  Convergence of a balancing domain decomposition by constraints and energy minimization , 2002, Numer. Linear Algebra Appl..

[21]  Johannes K. Kraus,et al.  Algebraic multilevel preconditioning of finite element matrices using local Schur complements , 2006, Numer. Linear Algebra Appl..

[22]  Victorita Dolean,et al.  An introduction to domain decomposition methods - algorithms, theory, and parallel implementation , 2015 .

[23]  O. Nevanlinna Remarks on Picard-Lindelöf iteration , 1989 .

[24]  Y. Kuznetsov,et al.  Algebraic multigrid domain decomposition methods , 1989 .

[25]  Ludmil T. Zikatanov,et al.  Weak Approximation Properties of Elliptic Projections with Functional Constraints , 2011, Multiscale Model. Simul..

[26]  David R. Stoutemyer Numerical Implementation of the Schwarz Alternating Procedure for Elliptic Partial Differential Equations , 1973 .

[27]  Pierre Ladevèze,et al.  Error Estimate Procedure in the Finite Element Method and Applications , 1983 .

[28]  Sergey Repin,et al.  Accuracy Verification Methods , 2014 .

[29]  S. Repin,et al.  Exact constants in Poincaré type inequalities for functions with zero mean boundary traces , 2012, 1211.2224.

[30]  Zi-Cai Li,et al.  Schwarz Alternating Method , 1998 .

[31]  Yalchin Efendiev,et al.  Domain Decomposition Preconditioners for Multiscale Flows in High Contrast Media: Reduced Dimension Coarse Spaces , 2010, Multiscale Model. Simul..

[32]  R. Lazarov,et al.  Robust Domain Decomposition Preconditioners for Abstract Symmetric Positive Definite Bilinear Forms , 2011, 1105.1131.

[33]  Jinchao Xu,et al.  The auxiliary space method and optimal multigrid preconditioning techniques for unstructured grids , 1996, Computing.

[34]  Philippe Blanchard,et al.  Variational Methods in Mathematical Physics , 1992 .

[35]  Andrea Toselli,et al.  Domain decomposition methods : algorithms and theory , 2005 .

[36]  M. Sarkis,et al.  Schwarz Preconditioners for Elliptic Problems with Discontinuous Coefficients Using Conforming and N , 1994 .