Highly Water-Stable Zirconium Metal-Organic Framework UiO-66 Membranes Supported on Alumina Hollow Fibers for Desalination.

In this study, continuous zirconium(IV)-based metal-organic framework (Zr-MOF) membranes were prepared. The pure-phase Zr-MOF (i.e., UiO-66) polycrystalline membranes were fabricated on alumina hollow fibers using an in situ solvothermal synthesis method. Single-gas permeation and ion rejection tests were carried out to confirm membrane integrity and functionality. The membrane exhibited excellent multivalent ion rejection (e.g., 86.3% for Ca(2+), 98.0% for Mg(2+), and 99.3% for Al(3+)) on the basis of size exclusion with moderate permeance (0.14 L m(-2) h(-1) bar(-1)) and good permeability (0.28 L m(-2) h(-1) bar(-1) μm). Benefiting from the exceptional chemical stability of the UiO-66 material, no degradation of membrane performance was observed for various tests up to 170 h toward a wide range of saline solutions. The high separation performance combined with its outstanding water stability suggests the developed UiO-66 membrane as a promising candidate for water desalination.

[1]  Yuehe Lin,et al.  Metal organic framework membranes for separation applications , 2015 .

[2]  J. Caro,et al.  Remarkably enhanced gas separation by partial self-conversion of a laminated membrane to metal-organic frameworks. , 2015, Angewandte Chemie.

[3]  I. Pinnau,et al.  Quest for anionic MOF membranes: continuous sod-ZMOF membrane with CO2 adsorption-driven selectivity. , 2015, Journal of the American Chemical Society.

[4]  Hong‐Cai Zhou,et al.  Topology-guided design and syntheses of highly stable mesoporous porphyrinic zirconium metal-organic frameworks with high surface area. , 2015, Journal of the American Chemical Society.

[5]  Gary J. Miller,et al.  Chemical and Structural Stability of Zirconium-based Metal–Organic Frameworks with Large Three-Dimensional Pores by Linker Engineering , 2014, Angewandte Chemie.

[6]  Yuan Peng,et al.  Metal-organic framework nanosheets as building blocks for molecular sieving membranes , 2014, Science.

[7]  S. Qiu,et al.  Metal-organic framework membranes: from synthesis to separation application. , 2014, Chemical Society reviews.

[8]  Li Zhang,et al.  Applications of metal-organic frameworks in heterogeneous supramolecular catalysis. , 2014, Chemical Society reviews.

[9]  J. R. Johnson,et al.  Interfacial microfluidic processing of metal-organic framework hollow fiber membranes , 2014, Science.

[10]  Kang Li,et al.  Micro-structured alumina hollow fibre membranes – Potential applications in wastewater treatment , 2014 .

[11]  Omar M Yaghi,et al.  Water adsorption in porous metal-organic frameworks and related materials. , 2014, Journal of the American Chemical Society.

[12]  Kang Li,et al.  Zeolite NaA membranes supported on alumina hollow fibers: Effect of support resistances on pervaporation performance , 2014 .

[13]  Qian Liu,et al.  Bio-inspired polydopamine: a versatile and powerful platform for covalent synthesis of molecular sieve membranes. , 2013, Journal of the American Chemical Society.

[14]  Kang Li,et al.  A controlled sintering process for more permeable ceramic hollow fibre membranes , 2013 .

[15]  Michael O’Keeffe,et al.  The Chemistry and Applications of Metal-Organic Frameworks , 2013, Science.

[16]  Hae‐Kwon Jeong,et al.  In situ synthesis of thin zeolitic-imidazolate framework ZIF-8 membranes exhibiting exceptionally high propylene/propane separation. , 2013, Journal of the American Chemical Society.

[17]  Ping Chen,et al.  Unusual and highly tunable missing-linker defects in zirconium metal-organic framework UiO-66 and their important effects on gas adsorption. , 2013, Journal of the American Chemical Society.

[18]  David Fairen-Jimenez,et al.  Vapor-phase metalation by atomic layer deposition in a metal-organic framework. , 2013, Journal of the American Chemical Society.

[19]  C. Serre,et al.  Caffeine Confinement into a Series of Functionalized Porous Zirconium MOFs: A Joint Experimental/Modeling Exploration , 2013 .

[20]  Y. S. Lin,et al.  Synthesis of an organophilic ZIF-71 membrane for pervaporation solvent separation. , 2013, Chemical communications.

[21]  Krista S. Walton,et al.  Tuning the adsorption properties of UiO-66 via ligand functionalization. , 2012, Langmuir : the ACS journal of surfaces and colloids.

[22]  Christopher W. Jones,et al.  Continuous polycrystalline zeolitic imidazolate framework-90 membranes on polymeric hollow fibers. , 2012, Angewandte Chemie.

[23]  Xiu‐Ping Yan,et al.  Exploring reverse shape selectivity and molecular sieving effect of metal-organic framework UIO-66 coated capillary column for gas chromatographic separation. , 2012, Journal of chromatography. A.

[24]  Christian Serre,et al.  A series of isoreticular, highly stable, porous zirconium oxide based metal-organic frameworks. , 2012, Angewandte Chemie.

[25]  F. Kapteijn,et al.  Practical Approach to Zeolitic Membranes and Coatings: State of the Art, Opportunities, Barriers, and Future Perspectives , 2012 .

[26]  Omar K Farha,et al.  Metal-organic framework materials as chemical sensors. , 2012, Chemical reviews.

[27]  Hong-Cai Zhou,et al.  Metal-organic frameworks for separations. , 2012, Chemical reviews.

[28]  J. Long,et al.  Introduction to metal-organic frameworks. , 2012, Chemical reviews.

[29]  Z. Lai,et al.  Sharp separation of C2/C3 hydrocarbon mixtures by zeolitic imidazolate framework-8 (ZIF-8) membranes synthesized in aqueous solutions. , 2011, Chemical communications.

[30]  M. Elimelech,et al.  The Future of Seawater Desalination: Energy, Technology, and the Environment , 2011, Science.

[31]  Kang Li,et al.  High‐Performance, Anode‐Supported, Microtubular SOFC Prepared from Single‐Step‐Fabricated, Dual‐Layer Hollow Fibers , 2011, Advanced materials.

[32]  Eric M.V. Hoek,et al.  A review of water treatment membrane nanotechnologies , 2011 .

[33]  T. Arnot,et al.  A review of reverse osmosis membrane materials for desalinationDevelopment to date and future poten , 2011 .

[34]  Bartolomeo Civalleri,et al.  Disclosing the Complex Structure of UiO-66 Metal Organic Framework: A Synergic Combination of Experiment and Theory , 2011 .

[35]  Dan Li,et al.  Contra-diffusion synthesis of ZIF-8 films on a polymer substrate. , 2011, Chemical communications.

[36]  O. Shekhah,et al.  MOF thin films: existing and future applications. , 2011, Chemical Society reviews.

[37]  W. Jin,et al.  Metal-organic framework membranes fabricated via reactive seeding. , 2011, Chemical communications.

[38]  Freek Kapteijn,et al.  Metal-organic framework membranes--high potential, bright future? , 2010, Angewandte Chemie.

[39]  M. Carreon,et al.  Highly permeable zeolite imidazolate framework-8 membranes for CO2/CH4 separation. , 2010, Journal of the American Chemical Society.

[40]  Armin Feldhoff,et al.  Molecular sieve membrane: supported metal-organic framework with high hydrogen selectivity. , 2010, Angewandte Chemie.

[41]  Jürgen Caro,et al.  Zeolitic imidazolate framework membrane with molecular sieving properties by microwave-assisted solvothermal synthesis. , 2009, Journal of the American Chemical Society.

[42]  R. Ranjan,et al.  Microporous Metal Organic Framework Membrane on Porous Support Using the Seeded Growth Method , 2009 .

[43]  Benny D. Freeman,et al.  Reverse osmosis desalination: water sources, technology, and today's challenges. , 2009, Water research.

[44]  Yushan Yan,et al.  High performance zeolite LTA pervaporation membranes on ceramic hollow fibers by dipcoating-wiping seed deposition. , 2009, Journal of the American Chemical Society.

[45]  S. Qiu,et al.  "Twin copper source" growth of metal-organic framework membrane: Cu(3)(BTC)(2) with high permeability and selectivity for recycling H(2). , 2009, Journal of the American Chemical Society.

[46]  Carlo Lamberti,et al.  A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability. , 2008, Journal of the American Chemical Society.

[47]  Xiaoyun Lu,et al.  New type of membrane material for water desalination based on a cross-linked bicontinuous cubic lyotropic liquid crystal assembly. , 2007, Journal of the American Chemical Society.

[48]  Susumu Kitagawa,et al.  Functional porous coordination polymers. , 2004, Angewandte Chemie.

[49]  Donald W. Breck,et al.  Zeolite Molecular Sieves: Structure, Chemistry, and Use , 1974 .

[50]  E. R. Nightingale,et al.  PHENOMENOLOGICAL THEORY OF ION SOLVATION. EFFECTIVE RADII OF HYDRATED IONS , 1959 .

[51]  Gérard Férey,et al.  Hybrid porous solids: past, present, future. , 2008, Chemical Society reviews.