In silico analysis reveals mir-98-5p as a potential inhibitor of tumor cell proliferation and metastasis in colorectal cancer by targeting the fzd3 receptor of the Wnt signaling pathway

[1]  Alex J. Smith,et al.  Non-Coding RNA and Frizzled Receptors in Cancer , 2021, Frontiers in Molecular Biosciences.

[2]  Long Yu,et al.  miR-98-5p inhibits gastric cancer cell stemness and chemoresistance by targeting branched-chain aminotransferases 1. , 2021, Life sciences.

[3]  Kathleen M. Jagodnik,et al.  Gene Set Knowledge Discovery with Enrichr , 2021, Current protocols.

[4]  A. Jemal,et al.  Cancer Statistics, 2021 , 2021, CA: a cancer journal for clinicians.

[5]  Kaizhao Zhang,et al.  miR-199b-5p enhances the proliferation of medullary thymic epithelial cells via regulating Wnt signaling by targeting Fzd6. , 2020, Acta biochimica et biophysica Sinica.

[6]  Minoru Kanehisa,et al.  KEGG: integrating viruses and cellular organisms , 2020, Nucleic Acids Res..

[7]  Wei-Dong Chen,et al.  Emerging Roles of Wnt Ligands in Human Colorectal Cancer , 2020, Frontiers in Oncology.

[8]  M. Lai,et al.  Increased expression of secreted frizzled related protein 1 (SFRP1) predicts ampullary adenocarcinoma recurrence , 2020, Scientific Reports.

[9]  P. Tekkis,et al.  Sporadic colorectal cancer in adolescents and young adults: a scoping review of a growing healthcare concern , 2020, International Journal of Colorectal Disease.

[10]  Tong Li,et al.  High miR-31-5p expression promotes colon adenocarcinoma progression by targeting TNS1 , 2020, Aging.

[11]  Renesh Bedre bioinfokit: Bioinformatics data analysis and visualization toolkit , 2020 .

[12]  Jing-Yuan Fang,et al.  Comprehensive review of targeted therapy for colorectal cancer , 2020, Signal Transduction and Targeted Therapy.

[13]  M. A. Ortiz,et al.  The physiological role of Wnt pathway in normal development and cancer , 2020, Experimental biology and medicine.

[14]  A. Alam,et al.  Wnt Signaling and Its Significance Within the Tumor Microenvironment: Novel Therapeutic Insights , 2019, Front. Immunol..

[15]  A. Venook,et al.  Targeted therapy for colorectal cancer metastases: A review of current methods of molecularly targeted therapy and the use of tumor biomarkers in the treatment of metastatic colorectal cancer , 2019, Cancer.

[16]  Federica Conte,et al.  MIENTURNET: an interactive web tool for microRNA-target enrichment and network-based analysis , 2019, BMC Bioinformatics.

[17]  Yun-Yan Guan,et al.  MiRNA-98 inhibits ovarian carcinoma cell proliferation, migration and invasion via targeting SALL4. , 2019, Minerva Medica.

[18]  A. Guo,et al.  GEDS: A Gene Expression Display Server for mRNAs, miRNAs and Proteins , 2019, Cells.

[19]  Chen Li,et al.  Down-regulation of FZD3 receptor suppresses growth and metastasis of human melanoma independently of canonical WNT signaling , 2019, Proceedings of the National Academy of Sciences.

[20]  Weilin Wang,et al.  Therapeutic potential of targeting the Wnt/β-catenin signaling pathway in colorectal cancer. , 2019, Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie.

[21]  Damian Szklarczyk,et al.  STRING v11: protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets , 2018, Nucleic Acids Res..

[22]  W. Lu,et al.  MicroRNA-98-5p inhibits proliferation and metastasis in non-small cell lung cancer by targeting TGFBR1 , 2018, International journal of oncology.

[23]  Jun Yu,et al.  Downregulated miR-98-5p promotes PDAC proliferation and metastasis by reversely regulating MAP4K4 , 2018, Journal of Experimental & Clinical Cancer Research.

[24]  Zhe Chen,et al.  Frizzled Receptors as Potential Therapeutic Targets in Human Cancers , 2018, International journal of molecular sciences.

[25]  Steven J. M. Jones,et al.  Oncogenic Signaling Pathways in The Cancer Genome Atlas. , 2018, Cell.

[26]  Feiran Wang,et al.  miR-219-5p suppresses the proliferation and invasion of colorectal cancer cells by targeting calcyphosin. , 2017, Oncology letters.

[27]  Emma M Schatoff,et al.  WNT Signaling and Colorectal Cancer , 2017, Current Colorectal Cancer Reports.

[28]  Ning Liu,et al.  MicroRNA-98 Attenuates Cell Migration and Invasion in Glioma by Directly Targeting Pre-B Cell Leukemia Homeobox 3 , 2017, Cellular and Molecular Neurobiology.

[29]  Gianluca Bontempi,et al.  TCGAbiolinks: an R/Bioconductor package for integrative analysis of TCGA data , 2015, Nucleic acids research.

[30]  Vivian S. W. Li,et al.  Targeting Wnt signaling in colorectal cancer. A Review in the Theme: Cell Signaling: Proteins, Pathways and Mechanisms. , 2015, American journal of physiology. Cell physiology.

[31]  D. Bartel,et al.  Predicting effective microRNA target sites in mammalian mRNAs , 2015, eLife.

[32]  Matthew E. Ritchie,et al.  limma powers differential expression analyses for RNA-sequencing and microarray studies , 2015, Nucleic acids research.

[33]  B. Ma,et al.  Clinical Significance of Frizzled Homolog 3 Protein in Colorectal Cancer Patients , 2013, PloS one.

[34]  Caroline Mollevi,et al.  Specific Extracellular Matrix Remodeling Signature of Colon Hepatic Metastases , 2013, PloS one.

[35]  Joshua M. Stuart,et al.  The Cancer Genome Atlas Pan-Cancer analysis project , 2013, Nature Genetics.

[36]  Martin Reczko,et al.  DIANA-microT web server v5.0: service integration into miRNA functional analysis workflows , 2013, Nucleic Acids Res..

[37]  Mira Ayadi,et al.  Gene Expression Classification of Colon Cancer into Molecular Subtypes: Characterization, Validation, and Prognostic Value , 2013, PLoS medicine.

[38]  R. Dahiya,et al.  Frizzled homolog proteins, microRNAs and Wnt signaling in cancer , 2013, International journal of cancer.

[39]  Rolf I. Skotheim,et al.  Phospholipase C Isozymes Are Deregulated in Colorectal Cancer – Insights Gained from Gene Set Enrichment Analysis of the Transcriptome , 2011, PloS one.

[40]  Davis J. McCarthy,et al.  edgeR: a Bioconductor package for differential expression analysis of digital gene expression data , 2009, Bioinform..

[41]  Michal A. Kurowski,et al.  Transcriptome Profile of Human Colorectal Adenomas , 2007, Molecular Cancer Research.

[42]  P. Shannon,et al.  Cytoscape: A Software Environment for Integrated Models of Biomolecular Interaction Networks , 2003 .

[43]  Brad T. Sherman,et al.  DAVID: Database for Annotation, Visualization, and Integrated Discovery , 2003, Genome Biology.

[44]  G. Terstappen,et al.  Identification, gene structure, and expression of human frizzled-3 (FZD3). , 2000, Biochemical and biophysical research communications.

[45]  K. Z. Masoodi,et al.  Database for annotation, visualisation and integrated discovery , 2022, Bioinformatics for Everyone.

[46]  Tanya Barrett,et al.  The Gene Expression Omnibus Database , 2016, Statistical Genomics.

[47]  Hilde van der Togt,et al.  Publisher's Note , 2003, J. Netw. Comput. Appl..