EFFICIENT INVERSE DYNAMICS OF GENERAL N-AXIS ROBOTIC MANIPULATORS

Presented in this paper is an efficient scheme to solve the inverse dynamics problem associated with robotic manipulators of arbitrary architecture, using the recursive Newton-Euler formulation. The scheme’s efficiency derives from the use of suitable coordinate frame to represent the vector quantities and the suitable manipulation of the vector operations. The computational complexities of this and other general dynamical formulations published so far are compared. In conclusion, it is observed that not only the dynamical formulation methodology, but also the judicious representation and manipulation of the vector quantities contribute to the computational efficiency of the algorithm. An example is presented to show the validity of the computational scheme.