A Geometrical Refinement of Shape Calculus Enabling Direct Simulation

The Shape Calculus is a bio-inspired timed and spatial calculus for describing 3D geometrical shapes moving in a space. Its purpose is twofold: i) modelling and formally verifying (not only) biological systems, and ii) simulating the models for validation and hypothesis testing. The original geometric primitives of the calculus are highly abstract: the associated simulator needs to attach a lot of code to the model specification in order to perform an effective simulation. In this work we propose a calculus refinement in which a detailed 3D characterization of the geometric primitives is injected into the syntax of the calculus. In this way, models written with the new syntax can be directly simulated.

[1]  Martti Mäntylä,et al.  Introduction to Solid Modeling , 1988 .

[2]  Patrick Cousot,et al.  Abstract interpretation: a unified lattice model for static analysis of programs by construction or approximation of fixpoints , 1977, POPL.

[3]  Emanuela Merelli,et al.  A Uniform Multiscale Meta-model of BioShape , 2011, CS2Bio@DisCoTec.

[4]  Emanuela Merelli,et al.  Hermes: Agent-Based Middleware for Mobile Computing , 2005, SFM.

[5]  D. Chand,et al.  On Convex Polyhedra , 1970 .

[6]  M. Ferrari Cancer nanotechnology: opportunities and challenges , 2005, Nature Reviews Cancer.

[7]  Alexander Repenning Inflatable Icons: Diffusion-Based Interactive Extrusion of 2D Images into 3D Models , 2005, J. Graph. Tools.

[8]  Challa S. S. R. Kumar,et al.  Nanomaterials for medical diagnosis and therapy , 2007 .

[9]  C M Dobson,et al.  Effects of macromolecular crowding on protein folding and aggregation , 1999, The EMBO journal.

[10]  A. Minton,et al.  Molecular crowding: analysis of effects of high concentrations of inert cosolutes on biochemical equilibria and rates in terms of volume exclusion. , 1998, Methods in enzymology.

[11]  Emanuela Merelli,et al.  BIOSHAPE\textsc{BioShape}: End-User Development for Simulating Biological Systems , 2011, IS-EUD.

[12]  Emanuela Merelli,et al.  Bone Remodelling in BioShape , 2010, CS2Bio.

[13]  Vladimir P. Torchilin,et al.  Nanoparticulates as Drug Carriers , 2006 .

[14]  G. Peltz,et al.  In Silico Mapping of Complex Disease-Related Traits in Mice , 2001, Science.

[15]  J. Mark Keil,et al.  Polygon Decomposition , 2000, Handbook of Computational Geometry.

[16]  Masaru Tomita,et al.  Space in systems biology of signaling pathways – towards intracellular molecular crowding in silico , 2005, FEBS letters.

[17]  Jed Hartman,et al.  The VRML 2.0 handbook - building moving worlds on the web , 1996 .

[18]  Ezio Bartocci,et al.  Shape Calculus. A Spatial Mobile Calculus for 3D Shapes , 2010, Sci. Ann. Comput. Sci..

[19]  Robin Milner,et al.  A Calculus of Communicating Systems , 1980, Lecture Notes in Computer Science.

[20]  Christoph M. Hoffmann,et al.  Geometric and Solid Modeling: An Introduction , 1989 .

[21]  Christer Ericson,et al.  Real-Time Collision Detection , 2004 .

[22]  Brian Mirtich,et al.  V-Clip: fast and robust polyhedral collision detection , 1998, TOGS.

[23]  Audrey Player,et al.  Nanotechnology, nanomedicine, and the development of new, effective therapies for cancer. , 2005, Nanomedicine : nanotechnology, biology, and medicine.

[24]  H. Kitano Systems Biology: A Brief Overview , 2002, Science.

[25]  Hwa A. Lim NANOTECHNOLOGY IN DIAGNOSTICS AND DRUG DELIVERY , 2004, Medicinal Chemistry Research.

[26]  James D. Murray,et al.  Encyclopedia of graphics file formats , 1994 .

[27]  Charles Taylor,et al.  Biomedical Paper Predictive Medicine: Computational Techniques in Therapeutic Decision-Making , 1999 .

[28]  Ezio Bartocci,et al.  Timed Operational Semantics and Well-Formedness of Shape Calculus , 2010, Sci. Ann. Comput. Sci..

[29]  Emanuela Merelli,et al.  BioShape: a spatial shape-based scale-independent simulation environment for biological systems , 2010, ICCS.