SKEIN THEORY AND THE MURPHY OPERATORS
暂无分享,去创建一个
[1] S. Lukáč. Homfly skeins and the Hopf link , 2000 .
[2] C. Blanchet. Hecke algebras, modular categories and 3-manifolds quantum invariants , 1998, math/9803114.
[3] K. Kawagoe. On the skeins in the annulus and applications to invariants of 3-manifolds , 1998 .
[4] A. K. Aiston. Adams operators and knot decorations , 1997, q-alg/9711015.
[5] H. Morton,et al. IDEMPOTENTS OF HECKE ALGEBRAS OF TYPE A , 1997, q-alg/9702017.
[6] Arun Ram. Seminormal Representations of Weyl Groups and Iwahori‐Hecke Algebras , 1995, math/9511223.
[7] J. Katriel,et al. The fundamental invariant of the Hecke algebra Hn(q) characterizes the representations of Hn(q), Sn, SUq(N), and SU(N) , 1995, q-alg/9501021.
[8] H. Morton. Invariants of Links and 3-Manifolds From Skein Theory and From Quantum Groups , 1993 .
[9] V. Turaev. Conway and Kauffman modules of a solid torus , 1990 .
[10] H. Wenzl. Representations of braid groups and the quantum Yang-Baxter equation , 1990 .
[11] V. Jones. Hecke algebra representations of braid groups and link polynomials , 1987 .
[12] G. James,et al. Blocks and Idempotents of Hecke Algebras of General Linear Groups , 1987 .
[13] A. Gyoja. A $q$-analogue of Young symmetrizer , 1986 .
[14] G. Murphy,et al. A new construction of Young's seminormal representation of the symmetric groups , 1981 .
[15] I. G. MacDonald,et al. Symmetric functions and Hall polynomials , 1979 .