NN-QuPiD Attack: Neural Network-Based Privacy Quantification Model for Private Information Retrieval Protocols

Institute of Computer Science & Information Technology, e University of Agriculture, Peshawar, Pakistan Department of Computer Science, Islamia College Peshawar, Peshawar, KP, Pakistan Institute of Computing, Kohat University of Science and Technology, Kohat, Pakistan Department of Information Technology, College of Computer and Information Sciences, King Saud University, P. O. Box 145111, 4545 Riyadh, Saudi Arabia

[1]  Valerio Schiavoni,et al.  X-search: revisiting private web search using intel SGX , 2017, Middleware.

[2]  Christopher Beckham,et al.  WekaDeeplearning4j: A deep learning package for Weka based on Deeplearning4j , 2019, Knowl. Based Syst..

[3]  Muhammad Arshad Islam,et al.  ObSecure Logging (OSLo): A Framework to Protect and Evaluate the Web Search Privacy in Health Care Domain , 2019 .

[4]  Muhammad Arshad Islam,et al.  Revealing PIR protocols protected users , 2016, 2016 Sixth International Conference on Innovative Computing Technology (INTECH).

[5]  Albin Petit Introducing Privacy in Current Web Search Engines , 2017 .

[6]  Nitesh Saxena,et al.  Web search query privacy: Evaluating query obfuscation and anonymizing networks , 2014, J. Comput. Secur..

[7]  Bin Wang,et al.  Evaluating word embedding models: methods and experimental results , 2019, APSIPA Transactions on Signal and Information Processing.

[8]  Lionel Brunie,et al.  SimAttack: private web search under fire , 2016, Journal of Internet Services and Applications.

[9]  Helen Nissenbaum,et al.  TrackMeNot: Enhancing the privacy of Web Search , 2011, ArXiv.

[10]  Muhammad Arshad Islam,et al.  Privacy Exposure Measure: A Privacy-Preserving Technique for Health-Related Web Search , 2019 .

[11]  Avi Arampatzis,et al.  Versatile Query Scrambling for Private Web Search , 2015, Information Retrieval Journal.

[12]  Grzegorz Kondrak,et al.  N-Gram Similarity and Distance , 2005, SPIRE.

[13]  Muhammad Arshad Islam,et al.  Poshida II, a Multi Group Distributed Peer to Peer Protocol for Private Web Search , 2016, 2016 International Conference on Frontiers of Information Technology (FIT).

[14]  Muhammad Arshad Islam,et al.  QuPiD Attack: Machine Learning-Based Privacy Quantification Mechanism for PIR Protocols in Health-Related Web Search , 2020, Sci. Program..

[15]  Mohamad Ivan Fanany,et al.  Bi-directional Long Short-Term Memory using Quantized data of Deep Belief Networks for Sleep Stage Classification , 2017, ICCSCI.

[16]  Saif Mohammad,et al.  AffectiveTweets: a Weka Package for Analyzing Affect in Tweets , 2019, J. Mach. Learn. Res..

[17]  Muhammad Arshad Islam,et al.  Poshida, a protocol for private information retrieval , 2016, 2016 Sixth International Conference on Innovative Computing Technology (INTECH).

[18]  Alexandre Viejo,et al.  Multi-party Methods for Privacy-Preserving Web Search: Survey and Contributions , 2015, Advanced Research in Data Privacy.

[19]  Carmela Troncoso,et al.  OB-PWS: Obfuscation-Based Private Web Search , 2012, 2012 IEEE Symposium on Security and Privacy.

[20]  Srdjan Capkun,et al.  Quantifying Web-Search Privacy , 2014, CCS.

[21]  Eytan Adar,et al.  User 4XXXXX9: Anonymizing Query Logs , 2007 .

[22]  Muhammad Arshad Islam,et al.  Quantification of PIR protocols privacy , 2017, 2017 International Conference on Communication, Computing and Digital Systems (C-CODE).

[23]  Yung-Yao Chen,et al.  Design and Implementation of Cloud Analytics-Assisted Smart Power Meters Considering Advanced Artificial Intelligence as Edge Analytics in Demand-Side Management for Smart Homes , 2019, Sensors.