Performance and calibration of the NIKA camera at the IRAM 30 m telescope

The New IRAM KID Array (NIKA) instrument is a dual-band imaging camera operating with Kinetic Inductance Detectors (KID) cooled at 100 mK. NIKA is designed to observe the sky at wavelengths of 1.25 and 2.14 mm from the IRAM 30m telescope at Pico Veleta with an estimated resolution of 13 arcsec and 18 arcsec respectively. This work presents the performance of the NIKA camera prior to its opening to the astrophysical community as an IRAM common user facility in early 2014. NIKA is a test-bench for the final NIKA2 instrument to be installed at the end of 2015. The last NIKA observation campaigns on November 2012 and June 2013 have been used to evaluate this performance and to improve the control of systematic effects. We discuss here the dynamical tuning of the readout electronics to optimize the KID working point with respect to background changes and the new technique of atmospheric absorption correction. These modifications improve significantly the overall linearity, sensitivity and absolute calibration performance of NIKA. This is proved on observations of point-like sources for which we obtain a best sensitivity (averaged over all valid detectors) of 40 and 14 mJy.s^1/2 for optimal weather conditions for the 1.25 and 2.14 mm arrays, respectively. NIKA observations of well known extended sources (DR21 complex and the Horsehead nebula) are presented. This performance makes the NIKA camera a competitive astrophysical instrument.

[1]  C. A. Oxborrow,et al.  Planck 2013 results - VIII. HFI photometric calibration and mapmaking , 2013, 1303.5069.

[2]  N. Ponthieu,et al.  Latest NIKA Results and the NIKA-2 Project , 2013, 1310.1230.

[3]  B. Altieri,et al.  A dust-obscured massive maximum-starburst galaxy at a redshift of 6.34 , 2013, Nature.

[4]  Canada.,et al.  WHAT DETERMINES THE DENSITY STRUCTURE OF MOLECULAR CLOUDS? A CASE STUDY OF ORION B WITH HERSCHEL , 2013, 1304.0327.

[5]  N. Ponthieu,et al.  Improved mm-wave photometry for kinetic inductance detectors , 2013 .

[6]  M. Sauvage,et al.  The spine of the swan: a Herschel study of the DR21 ridge and filaments in Cygnus X , 2012, 1206.1243.

[7]  M. Calvo,et al.  NIKEL: Electronics and data acquisition for kilopixels kinetic inductance camera , 2012, 1204.1415.

[8]  R. B. Barreiro,et al.  Planck intermediate results. II. Comparison of Sunyaev-Zeldovich measurements from Planck and from the Arcminute Microkelvin Imager for 11 galaxy clusters , 2012, 1204.1318.

[9]  I. Smail,et al.  A bright z = 5.2 lensed submillimeter galaxy in the field of Abell 773 - HLSJ091828.6+514223 , 2012, 1201.2908.

[10]  J. Kneib,et al.  A MOLECULAR EINSTEIN RING TOWARD THE z = 3.93 SUBMILLIMETER GALAXY MM18423+5938 , 2011, 1106.1432.

[11]  Bonn,et al.  A new perspective on the submillimetre galaxy MM 18423+5938 at redshift 3.9296 from radio continuum imaging , 2011, 1103.0583.

[12]  J. J. A. Baselmans,et al.  A DUAL-BAND MILLIMETER-WAVE KINETIC INDUCTANCE CAMERA FOR THE IRAM 30 m TELESCOPE , 2011, 1102.0870.

[13]  T. An,et al.  The Submillimeter Array 1.3 mm line survey of Arp 220 , 2010, 1012.3753.

[14]  R. Klessen,et al.  The link between molecular cloud structure and turbulence , 2010, 1001.2453.

[15]  Mitaka,et al.  Detection of an ultrabright submillimetre galaxy in the Subaru/XMM-Newton Deep Field using AzTEC/ASTE , 2010, Monthly Notices of the Royal Astronomical Society.

[16]  P. Andre',et al.  Discovery of an extremely bright submillimeter galaxy at z=3.93 , 2010, 1009.0449.

[17]  A. Monfardini,et al.  High-speed phonon imaging using frequency-multiplexed kinetic inductance detectors , 2010, 1004.5066.

[18]  J. J. A. Baselmans,et al.  NIKA: A millimeter-wave kinetic inductance camera , 2010, 1004.2209.

[19]  Edward J. Wollack,et al.  GISMO, a 2 mm Bolometer Camera Optimized for the Study of High Redshift Galaxies , 2008 .

[20]  Edward J. Wollack,et al.  A Kilopixel Array of TES Bolometers for ACT: Development, Testing, and First Light , 2008 .

[21]  UK.,et al.  Search for cold debris disks around M-dwarfs. II , 2006, astro-ph/0609574.

[22]  Pierre Hily-Blant,et al.  Velocity field and star formation in the Horsehead nebula , 2005, astro-ph/0601605.

[23]  S. Bontemps,et al.  The earliest phases of massive star formation within entire molecular cloud complexes , 2005, Proceedings of the International Astronomical Union.

[24]  A. A. Kaas,et al.  ISOCAM and molecular observations of the edge of the Horsehead nebula , 2003 .

[25]  H. Leduc,et al.  A broadband superconducting detector suitable for use in large arrays , 2003, Nature.

[26]  R. Genzel,et al.  Counterrotating Nuclear Disks in Arp 220 , 1998, astro-ph/9810325.

[27]  Wolfgang Wild,et al.  The beam pattern of the IRAM 30-m telescope (a reflector with several surface error distributions) , 1998 .

[28]  N. Scoville,et al.  Arcsecond Imaging of CO Emission in the Nucleus of Arp 220 , 1997 .

[29]  Edwin A. Valentijn,et al.  Photon Detectors for Space Instrumentation , 1992 .

[30]  J. Carlstrom,et al.  High-velocity HCO+ emission associated with the DR 21 molecular outflow , 1992 .

[31]  I. Gatley,et al.  A spectroscopic study of the Dr 21 outflow source. III - The CO line emission , 1991 .

[32]  I. Gatley,et al.  A spectroscopic study of the DR 21 outflow source. II. The vibrational H2 line emission , 1991 .

[33]  S. L. Scott,et al.  Interferometric Observations of 1.4 Millimeter Continuum Sources , 1989 .

[34]  M. Hawrylycz,et al.  Far-infrared sources in Cygnus X - An extended emission complex at DR 21 and unresolved sources at S106 and ON 2 , 1982 .

[35]  A. B. Vane,et al.  Atmospheric Absorption Measurements with a Microwave Radiometer , 1946 .