Crowdsourcing-based semantic relation recognition for natural language questions over RDF data

ABSTRACT Natural language query systems over RDF data need to rely on the semantic relations in query. First, we propose the new crowdsourcing model that used to produce semantic relations dataset. The model not only inherits completeness of the iterative model and accuracy of the parallel model, but also saves human resources. Second, we mine the rules of semantic relation recognition from the correlations between dependency structures and semantic relations. Third, we propose an algorithm of semantic relation recognition for natural language query over RDF data, and experiments demonstrate that it can recognize more semantic relations than existing methods.

[1]  Mohamed Yahya,et al.  Question answering and query processing for extended knowledge graphs , 2016 .

[2]  André Freitas,et al.  Natural language queries over heterogeneous linked data graphs: a distributional-compositional semantics approach , 2014, IUI.

[3]  Sébastien Ferré squall2sparql: a Translator from Controlled English to Full SPARQL 1.1 , 2013, CLEF.

[4]  Lei Zou,et al.  How to Build Templates for RDF Question/Answering: An Uncertain Graph Similarity Join Approach , 2015, SIGMOD Conference.

[5]  Enrico Motta,et al.  PowerAqua: Fishing the Semantic Web , 2006, ESWC.

[6]  Gerhard Weikum,et al.  Automated Template Generation for Question Answering over Knowledge Graphs , 2017, WWW.

[7]  Jens Lehmann,et al.  AskNow: A Framework for Natural Language Query Formalization in SPARQL , 2016, ESWC.

[8]  Fang Wu,et al.  Crowdsourcing, attention and productivity , 2008, J. Inf. Sci..

[9]  Fleur Mougin,et al.  Querying biomedical Linked Data with natural language questions , 2017, Semantic Web.

[10]  Jeffrey Heer,et al.  Identifying medical terms in patient-authored text: a crowdsourcing-based approach , 2013, J. Am. Medical Informatics Assoc..

[11]  Harris Wu,et al.  Web service discovery among large service pools utilising semantic similarity and clustering , 2017, Enterp. Inf. Syst..

[12]  Ming-Wei Chang,et al.  Open Domain Question Answering via Semantic Enrichment , 2015, WWW.

[13]  Enrico Motta,et al.  Ontology-Driven Question Answering in AquaLog , 2004, NLDB.

[14]  Dongyan Zhao,et al.  Natural language question answering over RDF: a graph data driven approach , 2014, SIGMOD Conference.

[15]  Pietro Perona,et al.  Sleep spindle detection: crowdsourcing and evaluating performance of experts, non-experts, and automated methods , 2014, Nature Methods.

[16]  Jennifer Tosti-Kharas,et al.  Crowdsourcing content analysis for managerial research , 2014 .

[17]  Enrico Motta,et al.  AquaLog: An Ontology-Portable Question Answering System for the Semantic Web , 2005, ESWC.

[18]  T. Yeates,et al.  CrowdPhase: crowdsourcing the phase problem , 2014, Acta crystallographica. Section D, Biological crystallography.

[19]  Jianqiang Li,et al.  Exploiting semantic linkages among multiple sources for semantic information retrieval , 2014, Enterp. Inf. Syst..

[20]  Jens Lehmann,et al.  Template-based question answering over RDF data , 2012, WWW.

[21]  Liu Jie,et al.  Linked Open Data Query Based on Natural Language , 2017 .

[22]  Khaled Shaalan,et al.  A Review and Future Perspectives of Arabic Question Answering Systems , 2016, IEEE Transactions on Knowledge and Data Engineering.

[23]  Daniel Jurafsky,et al.  Parsing to Stanford Dependencies: Trade-offs between Speed and Accuracy , 2010, LREC.

[24]  Panagiotis G. Ipeirotis,et al.  Quality management on Amazon Mechanical Turk , 2010, HCOMP '10.

[25]  William N. Robinson,et al.  Discovery and diagnosis of behavioral transitions in patient event streams , 2012, TMIS.

[26]  Kwong-Sak Leung,et al.  A Survey of Crowdsourcing Systems , 2011, 2011 IEEE Third Int'l Conference on Privacy, Security, Risk and Trust and 2011 IEEE Third Int'l Conference on Social Computing.

[27]  Alon Y. Halevy,et al.  Crowdsourcing systems on the World-Wide Web , 2011, Commun. ACM.

[28]  Tova Milo,et al.  NL2CM: A Natural Language Interface to Crowd Mining , 2015, SIGMOD Conference.

[29]  Tova Milo,et al.  OASSIS: query driven crowd mining , 2014, SIGMOD Conference.

[30]  Oren Etzioni,et al.  Open question answering over curated and extracted knowledge bases , 2014, KDD.

[31]  Carlo Zaniolo,et al.  Answering Controlled Natural Language Questions on RDF Knowledge Bases , 2016, EDBT.

[32]  Michael S. Bernstein,et al.  Context Trees: Crowdsourcing Global Understanding from Local Views , 2014, HCOMP.

[33]  Changqin Quan,et al.  Exploiting salient semantic analysis for information retrieval , 2016, Enterp. Inf. Syst..

[34]  Marta R. Costa-jussà,et al.  Opinion Mining of Spanish Customer Comments with Non-Expert Annotations on Mechanical Turk , 2010, Mturk@HLT-NAACL.

[35]  Vikas Kumar,et al.  CrowdSearch: exploiting crowds for accurate real-time image search on mobile phones , 2010, MobiSys '10.

[36]  Lydia B. Chilton,et al.  The labor economics of paid crowdsourcing , 2010, EC '10.

[37]  Duncan J. Watts,et al.  Financial incentives and the "performance of crowds" , 2009, HCOMP '09.

[38]  Roberto Basili,et al.  Dynamic polarity lexicon acquisition for advanced Social Media analytics , 2017 .

[39]  Vikas Sindhwani,et al.  Data Quality from Crowdsourcing: A Study of Annotation Selection Criteria , 2009, HLT-NAACL 2009.

[40]  Faouzi Boufares,et al.  Semantic Recognition of a Data Structure in Big-Data , 2014 .

[41]  Viera Rozinajová,et al.  Using Natural Language to Search Linked Data , 2016, International KEYSTONE Conference.

[42]  Dan I. Moldovan,et al.  Automatic Extraction of Actionable Knowledge , 2016, 2016 IEEE Tenth International Conference on Semantic Computing (ICSC).

[43]  Omar Chiotti,et al.  An approach to define semantics for BPM systems interoperability , 2015, Enterp. Inf. Syst..

[44]  Carlos Felgueiras,et al.  Europe and MENA Cooperation Advances in Information and Communication Technologies , 2017 .

[45]  Jie Ji,et al.  A natural language based knowledge representation method for medical diagnosis , 2016, 2016 SAI Computing Conference (SAI).

[46]  Gianluca Demartini,et al.  Large-scale linked data integration using probabilistic reasoning and crowdsourcing , 2013, The VLDB Journal.

[47]  Lan Chen,et al.  Semantic Link Network-Based Model for Organizing Multimedia Big Data , 2014, IEEE Transactions on Emerging Topics in Computing.

[48]  Gerhard Weikum,et al.  Deep answers for naturally asked questions on the web of data , 2012, WWW.

[49]  Sébastien Ferré SQUALL: The expressiveness of SPARQL 1.1 made available as a controlled natural language , 2014, Data Knowl. Eng..

[50]  Panagiotis G. Ipeirotis,et al.  Get another label? improving data quality and data mining using multiple, noisy labelers , 2008, KDD.

[51]  Joakim Nivre,et al.  Universal Stanford dependencies: A cross-linguistic typology , 2014, LREC.

[52]  Gerhard Weikum,et al.  PATTY: A Taxonomy of Relational Patterns with Semantic Types , 2012, EMNLP.

[53]  Dan I. Moldovan,et al.  K-Extractor: Automatic Knowledge Extraction for Hybrid Question Answering , 2016, 2016 IEEE Tenth International Conference on Semantic Computing (ICSC).

[54]  Tova Milo,et al.  A Natural Language Interface for Querying General and Individual Knowledge , 2015, Proc. VLDB Endow..

[55]  William C. Regli,et al.  Geometric reasoning via internet CrowdSourcing , 2009, Symposium on Solid and Physical Modeling.

[56]  Gerhard Weikum,et al.  Natural Language Questions for the Web of Data , 2012, EMNLP.

[57]  Bastien Chopard,et al.  Crowdsourcing Satellite Imagery Analysis: Study of Parallel and Iterative Models , 2012, GIScience.

[58]  Hanh Huu Hoang,et al.  Ontology-based approaches for cross-enterprise collaboration: a literature review on semantic business process management , 2014, Enterp. Inf. Syst..

[59]  Gerhard Weikum,et al.  Robust question answering over the web of linked data , 2013, CIKM.

[60]  Amit P. Sheth,et al.  RQUERY: Rewriting Natural Language Queries on Knowledge Graphs to Alleviate the Vocabulary Mismatch Problem , 2017, AAAI.

[61]  Aaron Michael Koblin,et al.  The sheep market , 2009, C&C '09.

[62]  Jens Lehmann,et al.  CubeQA - Question Answering on RDF Data Cubes , 2016, SEMWEB.

[63]  Miloslav Konopík,et al.  SWSNL: Semantic Web Search Using Natural Language , 2013, Expert Syst. Appl..

[64]  Jens Lehmann,et al.  Sorry, i don't speak SPARQL: translating SPARQL queries into natural language , 2013, WWW.