Accuracy of internal dose calculations with special consideration of radiopharmaceutical biokinetics

The individual steps of internal dose calculation, including the models and data used, as well as error considerations, are analysed following a short synopsis on the formalism of absorbed dose calculation. The mean dose in a target tissue depends on the administered activity, the residence time of the activity in the source tissues and the mean absorbed dose in the target tissue per transformation in a source tissue. Usually, a standard dosage is applied in radionuclide studies except in children. Actually administered and nomial activities generally differ by less than 10%. For the purpose of internal dose calculation, the biokinetics of a radiopharmaceutical are reflected in the residence times for the individual source tissues. The methods and the evaluation of measurements of biodistribution and retention data are discussed. The extrapolation of animal data to man is treated in some detail, including a survey of the methods used, as well as an attempt for validating these methods. None of these seem to yield more convincing results than the direct transfer of the residence times from animal to man, at least for the two radiopharmaceuticals discussed. The minimum period of measurement to derive residence times for the purpose of dose calculation hasmore » been determined as about one physical half-time. Some problems of the dose per transformation to a phantom are presented, including the age- or size-dependence of the internal dose. Organ doses to the phantom, calculated from different apparently reliable sets of biokinetic data, are generally compatible within a factor of 2 to 3, and somatically effective doses are generally compatible within a factor of less than 2.« less