Functional and structural analysis of catabolite control protein C that responds to citrate

[1]  N. Ogawa,et al.  Crystal structure of the full‐length LysR‐type transcription regulator CbnR in complex with promoter DNA , 2020, The FEBS journal.

[2]  A. Joachimiak,et al.  Crystal structure of the ligand‐binding domain of a LysR‐type transcriptional regulator: transcriptional activation via a rotary switch , 2018, Molecular microbiology.

[3]  Liming Jin,et al.  Structural and Biochemical Analysis of the Citrate-Responsive Mechanism of the Regulatory Domain of Catabolite Control Protein E from Staphylococcus aureus , 2018 .

[4]  N. Ogawa,et al.  Crystal structure of the DNA‐binding domain of the LysR‐type transcriptional regulator CbnR in complex with a DNA fragment of the recognition‐binding site in the promoter region , 2018, The FEBS journal.

[5]  G. Leonard,et al.  The solution configurations of inactive and activated DntR have implications for the sliding dimer mechanism of LysR transcription factors , 2016, Scientific Reports.

[6]  Inseong Jo,et al.  Structural details of the OxyR peroxide-sensing mechanism , 2015, Proceedings of the National Academy of Sciences.

[7]  Cai-Guang Yang,et al.  Metabolic sensor governing bacterial virulence in Staphylococcus aureus , 2014, Proceedings of the National Academy of Sciences.

[8]  R. Powers,et al.  Catabolite Control Protein E (CcpE) Is a LysR-type Transcriptional Regulator of Tricarboxylic Acid Cycle Activity in Staphylococcus aureus* , 2013, The Journal of Biological Chemistry.

[9]  E. Neidle,et al.  The DNA-binding domain of BenM reveals the structural basis for the recognition of a T-N11-A sequence motif by LysR-type transcriptional regulators. , 2013, Acta crystallographica. Section D, Biological crystallography.

[10]  P. Zwart,et al.  Towards automated crystallographic structure refinement with phenix.refine , 2012, Acta crystallographica. Section D, Biological crystallography.

[11]  F. Kull,et al.  The crystal structure of AphB, a virulence gene activator from Vibrio cholerae, reveals residues that influence its response to oxygen and pH , 2012, Molecular microbiology.

[12]  M. Solà,et al.  Structural studies on the full‐length LysR‐type regulator TsaR from Comamonas testosteroni T‐2 reveal a novel open conformation of the tetrameric LTTR fold , 2010, Molecular microbiology.

[13]  Y. Fujita Carbon Catabolite Control of the Metabolic Network in Bacillus subtilis , 2009, Bioscience, biotechnology, and biochemistry.

[14]  S. Maddocks,et al.  Structure and function of the LysR-type transcriptional regulator (LTTR) family proteins. , 2008, Microbiology.

[15]  A. Sonenshein,et al.  Control of key metabolic intersections in Bacillus subtilis , 2007, Nature Reviews Microbiology.

[16]  Todd J Clark,et al.  Distinct effector-binding sites enable synergistic transcriptional activation by BenM, a LysR-type regulator. , 2007, Journal of molecular biology.

[17]  A. Sonenshein,et al.  Molecular mechanism of the regulation of Bacillus subtilis gltAB expression by GltC. , 2007, Journal of molecular biology.

[18]  A. Sonenshein,et al.  CcpC-Dependent Regulation of citB and lmo0847 in Listeria monocytogenes , 2006, Journal of bacteriology.

[19]  Gerrit Groenhof,et al.  GROMACS: Fast, flexible, and free , 2005, J. Comput. Chem..

[20]  A. Sonenshein CodY, a global regulator of stationary phase and virulence in Gram-positive bacteria. , 2005, Current opinion in microbiology.

[21]  L. Aravind,et al.  The many faces of the helix-turn-helix domain: transcription regulation and beyond. , 2005, FEMS microbiology reviews.

[22]  D. J. Price,et al.  A modified TIP3P water potential for simulation with Ewald summation. , 2004, The Journal of chemical physics.

[23]  J. Zaim,et al.  Identification of activating region (AR) of Escherichia coli LysR‐type transcription factor CysB and CysB contact site on RNA polymerase alpha subunit at the cysP promoter , 2004, Molecular microbiology.

[24]  Wei Zhang,et al.  A point‐charge force field for molecular mechanics simulations of proteins based on condensed‐phase quantum mechanical calculations , 2003, J. Comput. Chem..

[25]  T. Nonaka,et al.  Crystal structure of a full-length LysR-type transcriptional regulator, CbnR: unusual combination of two subunit forms and molecular bases for causing and changing DNA bend. , 2003, Journal of molecular biology.

[26]  Randy J Read,et al.  Electronic Reprint Biological Crystallography Phenix: Building New Software for Automated Crystallographic Structure Determination Biological Crystallography Phenix: Building New Software for Automated Crystallographic Structure Determination , 2022 .

[27]  A. Sonenshein,et al.  Direct and indirect roles of CcpA in regulation of Bacillus subtilis Krebs cycle genes , 2002, Molecular microbiology.

[28]  E. Neidle,et al.  Synergistic transcriptional activation by one regulatory protein in response to two metabolites , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[29]  R. Brennan,et al.  Prokaryotic transcription regulators: more than just the helix-turn-helix motif. , 2002, Current opinion in structural biology.

[30]  Julio Collado-Vides,et al.  Common History at the Origin of the Position–Function Correlation in Transcriptional Regulators in Archaea and Bacteria , 2001, Journal of Molecular Evolution.

[31]  A. Sonenshein,et al.  CcpC, a novel regulator of the LysR family required for glucose repression of the citB gene in Bacillus subtilis. , 2000, Journal of molecular biology.

[32]  G N Murshudov,et al.  The structure of the cofactor-binding fragment of the LysR family member, CysB: a familiar fold with a surprising subunit arrangement. , 1997, Structure.

[33]  K. C. Strasters,et al.  CARBOHYDRATE METABOLISM OF STAPHYLOCOCCUS AUREUS. , 1963, Journal of general microbiology.

[34]  A. Sonenshein,et al.  Regulating the Intersection of Metabolism and Pathogenesis in Gram-positive Bacteria , 2015, Microbiology spectrum.

[35]  A. Sonenshein,et al.  Dual role of CcpC protein in regulation of aconitase gene expression in Listeria monocytogenes and Bacillus subtilis. , 2013, Microbiology.

[36]  Berk Hess,et al.  P-LINCS:  A Parallel Linear Constraint Solver for Molecular Simulation. , 2008, Journal of chemical theory and computation.

[37]  Kevin Cowtan,et al.  research papers Acta Crystallographica Section D Biological , 2005 .

[38]  Z. Otwinowski,et al.  [20] Processing of X-ray diffraction data collected in oscillation mode. , 1997, Methods in enzymology.

[39]  Z. Otwinowski,et al.  Processing of X-ray diffraction data collected in oscillation mode. , 1997, Methods in enzymology.

[40]  P. Weitzman,et al.  Krebs' citric acid cycle : half a century and still turning , 1987 .