Tracking deuterium uptake in hydroponically grown maize roots using correlative helium ion microscopy and Raman micro-spectroscopy

[1]  P. Rösch,et al.  Phenotypic Differentiation of Autotrophic and Heterotrophic Bacterial Cells Using Raman-D2O Labeling. , 2022, Analytical chemistry.

[2]  Da-Wen Sun,et al.  Analyzing macromolecular composition of E. Coli O157:H7 using Raman-stable isotope probing. , 2022, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[3]  Gui Nam Wee,et al.  Raman-Deuterium Isotope Probing and Metagenomics Reveal the Drought Tolerance of the Soil Microbiome and Its Promotion of Plant Growth , 2022, mSystems.

[4]  C. Maurel,et al.  Non-invasive hydrodynamic imaging in plant roots at cellular resolution , 2021, Nature Communications.

[5]  William Truman,et al.  Plasmodiophora brassicae-Triggered Cell Enlargement and Loss of Cellular Integrity in Root Systems Are Mediated by Pectin Demethylation , 2021, Frontiers in Plant Science.

[6]  N. Gierlinger,et al.  Raman imaging of Micrasterias: new insights into shape formation , 2021, Protoplasma.

[7]  Y. Davoudpour,et al.  Microbial Identification, High-Resolution Microscopy and Spectrometry of the Rhizosphere in Its Native Spatial Context , 2021, Frontiers in Plant Science.

[8]  N. Kardjilov,et al.  Three-dimensional in vivo analysis of water uptake and translocation in maize roots by fast neutron tomography , 2021, Scientific Reports.

[9]  J. Byrne,et al.  Bio-imaging with the helium-ion microscope: A review , 2021, Beilstein Journal of Nanotechnology.

[10]  Y. Davoudpour,et al.  High resolution microscopy to evaluate the efficiency of surface sterilization of Zea Mays seeds , 2020, PloS one.

[11]  M. Wang,et al.  Analysis of plant secondary metabolism using stable isotope-labelled precursors. , 2020, Phytochemical analysis : PCA.

[12]  L. Rintoul,et al.  Characterisation of iron oxide encrusted microbial fossils , 2020, Scientific Reports.

[13]  Ulf-Dietrich Braumann,et al.  Correlia: an ImageJ plug‐in to co‐register and visualise multimodal correlative micrographs , 2020, Journal of microscopy.

[14]  J. Gan,et al.  Metabolism of mono-(2-ethylhexyl) phthalate in Arabidopsis thaliana: Exploration of metabolic pathways by deuterium labeling. , 2020, Environmental pollution.

[15]  N. Gierlinger,et al.  Infrared and Raman spectra of lignin substructures: Dibenzodioxocin , 2020, Journal of Raman spectroscopy : JRS.

[16]  M. Zarebanadkouki,et al.  Quantification of hydraulic redistribution in maize roots using neutron radiography , 2020, Vadose Zone Journal.

[17]  S. Oswald,et al.  Combination of Magnetic Resonance Imaging and Neutron Computed Tomography for Three‐Dimensional Rhizosphere Imaging , 2019, Vadose Zone Journal.

[18]  Curt R. Fischer,et al.  D2O Labeling to Measure Active Biosynthesis of Natural Products in Medicinal Plants. , 2018, AIChE journal. American Institute of Chemical Engineers.

[19]  Yunfei Xie,et al.  Incorporation of Heavy Water for Rapid Detection of Salmonella typhimurium by Raman Microspectroscopy , 2018, Food Analytical Methods.

[20]  R. Elbaum,et al.  Insight into plant cell wall chemistry and structure by combination of multiphoton microscopy with Raman imaging , 2018, Journal of biophotonics.

[21]  J. Kneipp,et al.  Raman Imaging of Plant Cell Walls in Sections of Cucumis sativus , 2018, Plants.

[22]  José Ángel Siles López,et al.  Raman-Deuterium Isotope Probing for in-situ identification of antimicrobial resistant bacteria in Thames River , 2017, Scientific Reports.

[23]  A. Schimmelmann,et al.  Optimization of on-line hydrogen stable isotope ratio measurements of halogen- and sulfur-bearing organic compounds using elemental analyzer-chromium/high-temperature conversion isotope ratio mass spectrometry (EA-Cr/HTC-IRMS). , 2017, Rapid communications in mass spectrometry : RCM.

[24]  R. Goodacre,et al.  Reverse and Multiple Stable Isotope Probing to Study Bacterial Metabolism and Interactions at the Single Cell Level. , 2016, Analytical chemistry.

[25]  H. Wanke,et al.  A deuterium-based labeling technique for the investigation of rooting depths, water uptake dynamics and unsaturated zone water transport in semiarid environments , 2016 .

[26]  A. Schintlmeister,et al.  Advancements in the application of NanoSIMS and Raman microspectroscopy to investigate the activity of microbial cells in soils , 2015, FEMS microbiology ecology.

[27]  I. Granlund,et al.  The cell biology of lignification in higher plants. , 2015, Annals of botany.

[28]  J. Larsen,et al.  Biotic interactions in the rhizosphere in relation to plant and soil nutrient dynamics , 2015 .

[29]  A. Schimmelmann,et al.  On-line hydrogen-isotope measurements of organic samples using elemental chromium: an extension for high temperature elemental-analyzer techniques. , 2015, Analytical chemistry.

[30]  A. Ragauskas,et al.  Production of deuterated switchgrass by hydroponic cultivation , 2015, Planta.

[31]  A. Schintlmeister,et al.  Tracking heavy water (D2O) incorporation for identifying and sorting active microbial cells , 2014, Proceedings of the National Academy of Sciences.

[32]  Artur Zdunek,et al.  Imaging of polysaccharides in the tomato cell wall with Raman microspectroscopy , 2014, Plant Methods.

[33]  A. Ragauskas,et al.  Effect of D2O on growth properties and chemical structure of annual ryegrass (Lolium multiflorum). , 2014, Journal of agricultural and food chemistry.

[34]  Li-hua Chen,et al.  Why fine tree roots are stronger than thicker roots: The role of cellulose and lignin in relation to slope stability , 2014 .

[35]  M. Frei Lignin: Characterization of a Multifaceted Crop Component , 2013, TheScientificWorldJournal.

[36]  Chu-Lin Cheng,et al.  Neutron imaging reveals internal plant water dynamics , 2013, Plant and Soil.

[37]  N. Kardjilov,et al.  Application potential of cold neutron radiography in plant science research , 2012 .

[38]  Notburga Gierlinger,et al.  Imaging of plant cell walls by confocal Raman microscopy , 2012, Nature Protocols.

[39]  J. Welker,et al.  Progress and challenges in using stable isotopes to trace plant carbon and water relations across scales , 2012 .

[40]  H. Vogel,et al.  Quantification and Modeling of Local Root Water Uptake Using Neutron Radiography and Deuterated Water , 2012 .

[41]  Johannes E. Schindelin,et al.  Fiji: an open-source platform for biological-image analysis , 2012, Nature Methods.

[42]  Malgorzata Baranska,et al.  Spectroscopic studies on bioactive polyacetylenes and other plant components in wild carrot root. , 2011, Journal of natural products.

[43]  M. Iijima,et al.  Visualization of lateral water transport pathways in soybean by a time of flight-secondary ion mass spectrometry cryo-system , 2011, Journal of experimental botany.

[44]  Xu Li,et al.  Understanding Lignification: Challenges Beyond Monolignol Biosynthesis1 , 2010, Plant Physiology.

[45]  W. Gray,et al.  Measuring the turnover rates of Arabidopsis proteins using deuterium oxide: an auxin signaling case study. , 2010, The Plant journal : for cell and molecular biology.

[46]  Jing-Ke Weng,et al.  The origin and evolution of lignin biosynthesis. , 2010, The New phytologist.

[47]  P. Adams,et al.  Label-free in situ imaging of lignification in the cell wall of low lignin transgenic Populus trichocarpa , 2009, Planta.

[48]  Joachim Selbig,et al.  The metabolic signature related to high plant growth rate in Arabidopsis thaliana , 2007, Proceedings of the National Academy of Sciences.

[49]  Frank J Vergeldt,et al.  MRI of long-distance water transport: a comparison of the phloem and xylem flow characteristics and dynamics in poplar, castor bean, tomato and tobacco. , 2006, Plant, cell & environment.

[50]  P. Hugenholtz,et al.  Numbers and locations of native bacteria on field-grown wheat roots quantified by fluorescence in situ hybridization (FISH). , 2006, Environmental microbiology.

[51]  R. Larson,et al.  Photochemistry in Hoagland's Nutrient Solution , 2003 .

[52]  P. Templer,et al.  Stable Isotopes in Plant Ecology , 2002 .

[53]  A. Vezzoli,et al.  Magnetic resonance imaging of molecular transport in living morning glory stems. , 2001, Magnetic resonance imaging.

[54]  Liukang Xu,et al.  Sensitivity of growth of roots versus leaves to water stress: biophysical analysis and relation to water transport. , 2000, Journal of experimental botany.

[55]  R. Bandurski,et al.  Analysis of Indole-3-acetic Acid Metabolism in Zea mays Using Deuterium Oxide as a Tracer. , 1983, Plant physiology.

[56]  Ulf-Dietrich Braumann,et al.  Visualization and co-registration of correlative microscopy data with the ImageJ plug-in Correlia. , 2021, Methods in cell biology.

[57]  N. Gierlinger,et al.  Raman Imaging of Plant Cell Walls. , 2020, Methods in molecular biology.

[58]  N. Gierlinger,et al.  Functional plant cell wall design revealed by the Raman imaging approach , 2010, Planta.

[59]  Thomas Dieing,et al.  Software Requirements and Data Analysis in Confocal Raman Microscopy , 2010 .

[60]  Notburga Gierlinger,et al.  The potential of Raman microscopy and Raman imaging in plant research , 2007 .

[61]  Hilde van der Togt,et al.  Publisher's Note , 2003, J. Netw. Comput. Appl..

[62]  N. Otsu A threshold selection method from gray level histograms , 1979 .