Comparing fluorescent and differential absorption LiDAR techniques for detecting algal biomass with applications to Arctic substrates
暂无分享,去创建一个
Stefania Matteoli | Michel Piché | Philippe Archambault | Eric Rehm | Fraser Dalgleish | Simon Lambert-Girard | Matthieu Huot | José Lagunas-Morales | P. Archambault | E. Rehm | F. Dalgleish | S. Matteoli | M. Huot | S. Lambert-Girard | M. Piché | José Lagunas-Morales
[1] A. Chekalyuk,et al. Advanced laser fluorometry of natural aquatic environments , 2008 .
[2] Peter Wadhams,et al. A new view of the underside of Arctic sea ice , 2006 .
[3] James H. Churnside,et al. Review of profiling oceanographic lidar , 2013 .
[4] F.R. Dalgleish,et al. An AUV-deployable pulsed laser line scan (PLLS) imaging sensor , 2007, OCEANS 2007.
[5] Yongxiang Hu,et al. Ocean subsurface studies with the CALIPSO spaceborne lidar , 2014 .
[6] M. Kahru,et al. Ocean Color Chlorophyll Algorithms for SEAWIFS , 1998 .
[7] André Morel,et al. Light scattering and chlorophyll concentration in case 1 waters: A reexamination , 1998 .
[8] D. Collins,et al. The role of reabsorption in the spectral distribution of phytoplankton fluorescence emission , 1985 .
[9] Subsea optics and imaging , 2013 .
[10] Fraser Dalgleish,et al. Experimental imaging performance evaluation for alternate configurations of undersea pulsed laser serial imagers , 2011, Defense + Commercial Sensing.
[11] A. Wulff,et al. Biodiversity, biogeography and zonation of marine benthic micro- and macroalgae in the Arctic and Antarctic , 2009 .
[12] C. W. Wright,et al. Short-pulse pump-and-probe technique for airborne laser assessment of Photosystem II photochemical characteristics , 2004, Photosynthesis Research.
[13] Tristan Crees,et al. 12 days under ice – an historic AUV deployment in the Canadian High Arctic , 2010, 2010 IEEE/OES Autonomous Underwater Vehicles.
[14] F. Colao,et al. RANGE RESOLVED LIDAR FLUOROSENSOR FOR MARINE INVESTIGATION , 2000 .
[15] P. A. Gordienko. The Arctic Ocean , 1961 .
[16] F. Dalgleish,et al. Weibull approximation of LiDAR waveforms for estimating the beam attenuation coefficient. , 2016, Optics express.
[17] C. Duarte,et al. Footprints of climate change in the Arctic marine ecosystem , 2011 .
[18] R. Barry,et al. Processes and impacts of Arctic amplification: A research synthesis , 2011 .
[19] Charles Mazel. Underwater Fluorescence Reference Panels , 1999 .
[20] G. Krause,et al. Chlorophyll Fluorescence and Photosynthesis: The Basics , 1991 .
[21] P. Wassmann,et al. Future Arctic Ocean Seasonal Ice Zones and Implications for Pelagic-Benthic Coupling , 2011 .
[22] W. Scott Pegau,et al. Inherent optical properties of the central Arctic surface waters , 2002 .
[23] Andrew J. Nevis,et al. High‐resolution determination of coral reef bottom cover from multispectral fluorescence laser line scan imagery , 2003 .
[24] Michael A. Borowitzka,et al. Chlorophyll a Fluorescence in Aquatic Sciences: Methods and Applications , 2010 .
[25] John R. Nelson,et al. From Sea to Sea: Canada's Three Oceans of Biodiversity , 2010, PloS one.
[26] Gérard Mégie,et al. Laser Remote Sensing: Fundamentals and Applications , 1985 .
[27] Andrew H. Barnard,et al. Spectral particulate attenuation and particle size distribution in the bottom boundary layer of a continental shelf , 2001 .