Comparing fluorescent and differential absorption LiDAR techniques for detecting algal biomass with applications to Arctic substrates

The physical and biological properties of Arctic ice and coastal benthos remain poorly understood due to the difficulty of accessing these substrates in ice-covered waters. A LiDAR system deployed on an autonomous underwater vehicle (AUV) can interrogate these 3D surfaces for physical and biological properties simultaneously. Using our understanding of the absorption, inelastic scattering (fluorescent), and elastic scattering properties of photosynthetic micro- and macroalgae excited by lasers, we present results of in situ tank tests using a two-wavelength (473 nm, 532 nm) prototype to evaluate both fluorosensor and differential absorption (DIAL) approaches using reflectance standards and selected macroalgae as targets.

[1]  A. Chekalyuk,et al.  Advanced laser fluorometry of natural aquatic environments , 2008 .

[2]  Peter Wadhams,et al.  A new view of the underside of Arctic sea ice , 2006 .

[3]  James H. Churnside,et al.  Review of profiling oceanographic lidar , 2013 .

[4]  F.R. Dalgleish,et al.  An AUV-deployable pulsed laser line scan (PLLS) imaging sensor , 2007, OCEANS 2007.

[5]  Yongxiang Hu,et al.  Ocean subsurface studies with the CALIPSO spaceborne lidar , 2014 .

[6]  M. Kahru,et al.  Ocean Color Chlorophyll Algorithms for SEAWIFS , 1998 .

[7]  André Morel,et al.  Light scattering and chlorophyll concentration in case 1 waters: A reexamination , 1998 .

[8]  D. Collins,et al.  The role of reabsorption in the spectral distribution of phytoplankton fluorescence emission , 1985 .

[9]  Subsea optics and imaging , 2013 .

[10]  Fraser Dalgleish,et al.  Experimental imaging performance evaluation for alternate configurations of undersea pulsed laser serial imagers , 2011, Defense + Commercial Sensing.

[11]  A. Wulff,et al.  Biodiversity, biogeography and zonation of marine benthic micro- and macroalgae in the Arctic and Antarctic , 2009 .

[12]  C. W. Wright,et al.  Short-pulse pump-and-probe technique for airborne laser assessment of Photosystem II photochemical characteristics , 2004, Photosynthesis Research.

[13]  Tristan Crees,et al.  12 days under ice – an historic AUV deployment in the Canadian High Arctic , 2010, 2010 IEEE/OES Autonomous Underwater Vehicles.

[14]  F. Colao,et al.  RANGE RESOLVED LIDAR FLUOROSENSOR FOR MARINE INVESTIGATION , 2000 .

[15]  P. A. Gordienko The Arctic Ocean , 1961 .

[16]  F. Dalgleish,et al.  Weibull approximation of LiDAR waveforms for estimating the beam attenuation coefficient. , 2016, Optics express.

[17]  C. Duarte,et al.  Footprints of climate change in the Arctic marine ecosystem , 2011 .

[18]  R. Barry,et al.  Processes and impacts of Arctic amplification: A research synthesis , 2011 .

[19]  Charles Mazel Underwater Fluorescence Reference Panels , 1999 .

[20]  G. Krause,et al.  Chlorophyll Fluorescence and Photosynthesis: The Basics , 1991 .

[21]  P. Wassmann,et al.  Future Arctic Ocean Seasonal Ice Zones and Implications for Pelagic-Benthic Coupling , 2011 .

[22]  W. Scott Pegau,et al.  Inherent optical properties of the central Arctic surface waters , 2002 .

[23]  Andrew J. Nevis,et al.  High‐resolution determination of coral reef bottom cover from multispectral fluorescence laser line scan imagery , 2003 .

[24]  Michael A. Borowitzka,et al.  Chlorophyll a Fluorescence in Aquatic Sciences: Methods and Applications , 2010 .

[25]  John R. Nelson,et al.  From Sea to Sea: Canada's Three Oceans of Biodiversity , 2010, PloS one.

[26]  Gérard Mégie,et al.  Laser Remote Sensing: Fundamentals and Applications , 1985 .

[27]  Andrew H. Barnard,et al.  Spectral particulate attenuation and particle size distribution in the bottom boundary layer of a continental shelf , 2001 .