Ab initio characterization of layered MoS2 as anode for sodium-ion batteries

Abstract Identifying suitable layered materials as electrodes with desirable electrochemical properties remains a key challenge for rechargeable Na-ion batteries (NIBs). Using first principles methods, here we examine the efficacy of layered molybdenum disulphide (MoS 2 ) as a host electrode material for NIBs. We identify various low energy Na adsorption sites and evaluate the stability of the hexagonal and tetragonal polytypes of MoS 2 upon Na intercalation. Our results illustrate a moderately strong binding between Na and MoS 2 that is thermodynamically favorable against the cluster formation and phase separation of Na. We find that while Na intercalation in MoS 2 results in a phase transformation from the hexagonal phase to the tetragonal phase, it gives rise to a maximum theoretical capacity of 146 mAh g −1 and a low average electrode potential in the range of 0.75–1.25 V. Our calculations of Na diffusion kinetics indicates a moderately fast mobility of Na in the van der Waals interlayer spaces of MoS 2 . These results highlight the promise of MoS 2 as an appealing negative electrode (anode) for rechargeable NIBs.

[1]  Yong‐Sheng Hu,et al.  Lithium storage in commercial MoS2 in different potential ranges , 2012 .

[2]  K. Schwarz,et al.  Mo cluster formation in the intercalation compound LiMoS 2 , 2000 .

[3]  Gurpreet Singh,et al.  MoS2/graphene composite paper for sodium-ion battery electrodes. , 2014, ACS nano.

[4]  R. Prins,et al.  Scanning Tunneling Microscopic Investigation of 1T-MoS2 , 1998 .

[5]  S. Dou,et al.  WS₂@graphene nanocomposites as anode materials for Na-ion batteries with enhanced electrochemical performances. , 2014, Chemical communications.

[6]  R. Asher A LAMELLAR COMPOUND OF SODIUM AND GRAPHITE , 1959 .

[7]  F. Wypych,et al.  1T-MoS2, a new metallic modification of molybdenum disulfide , 1992 .

[8]  G. Henkelman,et al.  A climbing image nudged elastic band method for finding saddle points and minimum energy paths , 2000 .

[9]  Jun Li,et al.  Electrochemical cycling reversibility of LiMoS2 using first-principles calculations , 2012 .

[10]  Gerbrand Ceder,et al.  Sidorenkite (Na3MnPO4CO3), a New Intercalation Cathode Material for Na-Ion Batteries , 2013 .

[11]  Gerbrand Ceder,et al.  Ab initio study of lithium intercalation in metal oxides and metal dichalcogenides , 1997 .

[12]  Qing Hua Wang,et al.  Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. , 2012, Nature nanotechnology.

[13]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[14]  J. Wilson,et al.  The transition metal dichalcogenides discussion and interpretation of the observed optical, electrical and structural properties , 1969 .

[15]  C. Julien Lithium intercalated compounds: Charge transfer and related properties , 2003 .

[16]  T. D. Hatchard,et al.  Reaction of Li with Alloy Thin Films Studied by In Situ AFM , 2003 .

[17]  Andras Kis,et al.  Stretching and breaking of ultrathin MoS2. , 2011, ACS nano.

[18]  Gerbrand Ceder,et al.  Electrode Materials for Rechargeable Sodium‐Ion Batteries: Potential Alternatives to Current Lithium‐Ion Batteries , 2012 .

[19]  Wu Zhou Electron microscopy: a phase transition glides into view. , 2014, Nature nanotechnology.

[20]  Marco Stampanoni,et al.  Visualization and Quantification of Electrochemical and Mechanical Degradation in Li Ion Batteries , 2013, Science.

[21]  R. Parr,et al.  Principle of maximum hardness , 1991 .

[22]  Ying-Sheng Huang,et al.  Atomic mechanism of the semiconducting-to-metallic phase transition in single-layered MoS2. , 2014, Nature nanotechnology.

[23]  M. Torabi,et al.  Electrochemical evaluation of nanocrystalline Zn-doped tin oxides as anodes for lithium ion microbatteries , 2011 .

[24]  Fuminori Mizuno,et al.  Phase Stability of Post-spinel Compound AMn2O4 (A = Li, Na, or Mg) and Its Application as a Rechargeable Battery Cathode , 2013 .

[25]  J. Goodenough,et al.  Sodium Intercalation Behavior of Layered NaxNbS2 (0≤x≤1) , 2013 .

[26]  Yoyo Hinuma,et al.  Thermodynamic and kinetic properties of the Li-graphite system from first-principles calculations , 2010 .

[27]  Rachid Yazami,et al.  A reversible graphite-lithium negative electrode for electrochemical generators , 1983 .

[28]  K. Kang,et al.  A new high-energy cathode for a Na-ion battery with ultrahigh stability. , 2013, Journal of the American Chemical Society.

[29]  G. Kresse,et al.  Ab initio density functional studies of transition-metal sulphides: II. Electronic structure , 1997 .

[30]  Reshef Tenne,et al.  New Route for Stabilization of 1T-WS2 and MoS2 Phases , 2011 .

[31]  Shinji Inazawa,et al.  Charge–discharge behavior of tin negative electrode for a sodium secondary battery using intermediate temperature ionic liquid sodium bis(fluorosulfonyl)amide–potassium bis(fluorosulfonyl)amide , 2012 .

[32]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[33]  V. Shenoy,et al.  Elastic softening of alloy negative electrodes for Na-ion batteries , 2013 .

[34]  Kevin W. Eberman,et al.  Colossal Reversible Volume Changes in Lithium Alloys , 2001 .

[35]  Nikhil V. Medhekar,et al.  Bonding Charge Density and Ultimate Strength of Monolayer Transition Metal Dichalcogenides , 2013, 1303.7259.

[36]  Zaiping Guo,et al.  Superior stability and high capacity of restacked molybdenum disulfide as anode material for lithium ion batteries. , 2010, Chemical communications.

[37]  Lelia Cosimbescu,et al.  Exfoliated MoS2 Nanocomposite as an Anode Material for Lithium Ion Batteries , 2010 .

[38]  T. Nam,et al.  Discharge mechanism of MoS2 for sodium ion battery: Electrochemical measurements and characterization , 2013 .

[39]  Density-functional study of LixMoS2 intercalates (0<=x<=1) , 2012, 1205.5220.

[40]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[41]  Jian Yu Huang,et al.  Microstructural evolution of tin nanoparticles during in situ sodium insertion and extraction. , 2012, Nano letters.

[42]  Brian C. Olsen,et al.  Lithium ion battery applications of molybdenum disulfide (MoS2) nanocomposites , 2014 .

[43]  Jin-Woo Park,et al.  Electrochemical Properties and Discharge Mechanism of Na/TiS2 Cells with Liquid Electrolyte at Room Temperature , 2013 .

[44]  R. R. Haering,et al.  Structural destabilization induced by lithium intercalation in MoS2 and related compounds , 1983 .

[45]  B. L. Evans,et al.  Temperature dependence of the electrical conductivity and hall coefficient in 2H‐MoS2, MoSe2, WSe2, and MoTe2 , 1977 .

[46]  Gerbrand Ceder,et al.  Ab initio calculation of the intercalation voltage of lithium-transition-metal oxide electrodes for rechargeable batteries , 1997 .

[47]  Y. Feldman,et al.  Diffraction from Disordered Stacking Sequences in MoS2 and WS2 Fullerenes and Nanotubes , 2012 .

[48]  James R Friend,et al.  Electrochemical control of photoluminescence in two-dimensional MoS(2) nanoflakes. , 2013, ACS nano.

[49]  L. Mattheiss Band Structures of Transition-Metal-Dichalcogenide Layer Compounds. , 1973 .

[50]  Stefan Grimme,et al.  Semiempirical GGA‐type density functional constructed with a long‐range dispersion correction , 2006, J. Comput. Chem..

[51]  Hua Zhang,et al.  The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. , 2013, Nature chemistry.

[52]  Teófilo Rojo,et al.  Update on Na-based battery materials. A growing research path , 2013 .

[53]  L. Nazar,et al.  Na-ion mobility in layered Na2FePO4F and olivine Na[Fe,Mn]PO4 , 2013 .

[54]  Anubhav Jain,et al.  Voltage, stability and diffusion barrier differences between sodium-ion and lithium-ion intercalation materials , 2011 .

[55]  Gyeong Sook Bang,et al.  Effective liquid-phase exfoliation and sodium ion battery application of MoS2 nanosheets. , 2014, ACS applied materials & interfaces.

[56]  Jiurong Liu,et al.  Enhanced Electrochemical Performance of Zn-Doped Fe3O4 with Carbon Coating , 2014 .