Security Analysis of Quantum Obfuscation

Quantum cryptography has developed some fundamental primitives such as quantum one-time pad and quantum IND (indistinguishability)-security. Compared with other terms in quantum cryptography, quantum obfuscation attracts less attention and is still in its infancy due to its difficulty in implementation and application. In this chapter, we provide a positive result of quantum obfuscation. To analyze the obfuscatability of quantum point functions, we introduce the strict definition of a quantum point function and discuss its variants of multiple points and multiple qubits. Furthermore, we discuss the application of quantum obfuscation in quantum zero-knowledge and quantum symmetric encryption.

[1]  Min Liang Secure multiparty quantum computation based on bit commitment , 2013, 1306.0447.

[2]  Yael Tauman Kalai,et al.  The Impossibility of Obfuscation with Auxiliary Input or a Universal Simulator , 2014, CRYPTO.

[3]  Stacey Jeffery,et al.  Quantum Homomorphic Encryption for Circuits of Low T-gate Complexity , 2014, CRYPTO.

[4]  Yael Tauman Kalai,et al.  On the impossibility of obfuscation with auxiliary input , 2005, 46th Annual IEEE Symposium on Foundations of Computer Science (FOCS'05).

[5]  Gorjan Alagic,et al.  Quantum Non-malleability and Authentication , 2016, CRYPTO.

[6]  Peter van Emde Boas,et al.  On tape versus core an application of space efficient perfect hash functions to the invariance of space , 1984, STOC '84.

[7]  Adam D. Bookatz QMA-complete problems , 2012, Quantum Inf. Comput..

[8]  Bill Fefferman,et al.  On Quantum Obfuscation , 2016, ArXiv.

[9]  Brent Waters,et al.  How to use indistinguishability obfuscation: deniable encryption, and more , 2014, IACR Cryptol. ePrint Arch..

[10]  Mark Zhandry,et al.  Random Oracles in a Quantum World , 2010, ASIACRYPT.

[11]  Hoi-Kwong Lo,et al.  Insecurity of Quantum Secure Computations , 1996, ArXiv.

[12]  Chao Wang,et al.  Quantum homomorphic signature , 2015, Quantum Inf. Process..

[13]  Craig Gentry,et al.  On the Implausibility of Differing-Inputs Obfuscation and Extractable Witness Encryption with Auxiliary Input , 2014, Algorithmica.

[14]  Stacey Jeffery,et al.  Circuit Obfuscation Using Braids , 2014, TQC.

[15]  Amit Sahai,et al.  On the (im)possibility of obfuscating programs , 2001, JACM.

[16]  I. Chuang,et al.  Quantum Computation and Quantum Information: Introduction to the Tenth Anniversary Edition , 2010 .

[17]  Tommaso Gagliardoni,et al.  Computational Security of Quantum Encryption , 2016, ICITS.

[18]  Ran Canetti,et al.  Obfuscating Point Functions with Multibit Output , 2008, EUROCRYPT.

[19]  Dennis Hofheinz,et al.  Obfuscation for Cryptographic Purposes , 2007, TCC.

[20]  Hirotada Kobayashi,et al.  General Properties of Quantum Zero-Knowledge Proofs , 2007, TCC.

[21]  Tommaso Gagliardoni,et al.  Unforgeable Quantum Encryption , 2017, IACR Cryptol. ePrint Arch..

[22]  Nir Bitansky,et al.  Point Obfuscation and 3-Round Zero-Knowledge , 2012, TCC.

[23]  Hoeteck Wee,et al.  On obfuscating point functions , 2005, STOC '05.

[24]  Tao Shang,et al.  Quantum random oracle model for quantum digital signature , 2016 .

[25]  Guy N. Rothblum,et al.  On Best-Possible Obfuscation , 2007, TCC.

[26]  Satoshi Hada,et al.  Zero-Knowledge and Code Obfuscation , 2000, ASIACRYPT.

[27]  Yael Tauman Kalai,et al.  On Symmetric Encryption and Point Obfuscation , 2010, TCC.

[28]  Andris Ambainis,et al.  Private quantum channels , 2000, Proceedings 41st Annual Symposium on Foundations of Computer Science.

[29]  Tao Shang,et al.  IND-secure quantum symmetric encryption based on point obfuscation , 2019, Quantum Inf. Process..

[30]  Tao Shang,et al.  On the obfuscatability of quantum point functions , 2019, Quantum Inf. Process..

[31]  Amit Sahai,et al.  Positive Results and Techniques for Obfuscation , 2004, EUROCRYPT.

[32]  D. Deutsch Quantum theory, the Church–Turing principle and the universal quantum computer , 1985, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[33]  Noam Nisan,et al.  Quantum circuits with mixed states , 1998, STOC '98.

[34]  Mihir Bellare,et al.  Random oracles are practical: a paradigm for designing efficient protocols , 1993, CCS '93.

[35]  Min Liang Symmetric quantum fully homomorphic encryption with perfect security , 2013, Quantum Inf. Process..

[36]  Nir Bitansky,et al.  On the impossibility of approximate obfuscation and applications to resettable cryptography , 2013, STOC '13.

[37]  Gilles Brassard,et al.  Strengths and Weaknesses of Quantum Computing , 1997, SIAM J. Comput..