Modelling the Effect of a Novel Autodissemination Trap on the Spread of Dengue in Shah Alam and Malaysia
暂无分享,去创建一个
David Greenhalgh | Yanfeng Liang | M. N. Ahmad Mohiddin | Rawaida Bahauddin | Hidayatulfathi Othman | Wasi Ahmad Nazni | Han Lim Lee | D. Greenhalgh | H. Lee | H. Othman | W. A. Nazni | M. Mohiddin | Yanfeng Liang | R. Bahauddin
[1] E Massad,et al. Estimation of R0 from the initial phase of an outbreak of a vector‐borne infection , 2009, Tropical medicine & international health : TM & IH.
[2] C. Wondji,et al. Pyrethroid Resistance in Malaysian Populations of Dengue Vector Aedes aegypti Is Mediated by CYP9 Family of Cytochrome P450 Genes , 2017, PLoS neglected tropical diseases.
[3] L. H. Lim. Dengue Vector Control in Malaysia- Challenges and Recent Advances , 2020 .
[4] James Watmough,et al. Further Notes on the Basic Reproduction Number , 2008 .
[5] Y. Halasa,et al. Cost of Dengue Vector Control Activities in Malaysia , 2015, The American journal of tropical medicine and hygiene.
[6] O. Diekmann,et al. On the definition and the computation of the basic reproduction ratio R0 in models for infectious diseases in heterogeneous populations , 1990, Journal of mathematical biology.
[7] M. Wonham,et al. A Comparative Analysis of Models for West Nile Virus , 2008, Mathematical Epidemiology.
[8] E. Massad,et al. Magnitude and frequency variations of vector-borne infection outbreaks using the Ross–Macdonald model: explaining and predicting outbreaks of dengue fever , 2016, Epidemiology and Infection.
[9] V. Rich. Personal communication , 1989, Nature.
[10] E. Massad,et al. Analysis of the optimal vaccination age for dengue in Brazil with a tetravalent dengue vaccine. , 2017, Mathematical biosciences.
[11] L. R. Petersen,et al. Zika Virus. , 2016, The New England journal of medicine.
[12] E Massad,et al. The risk of yellow fever in a dengue-infested area. , 2001, Transactions of the Royal Society of Tropical Medicine and Hygiene.
[13] P. van den Driessche,et al. Reproduction numbers of infectious disease models , 2017, Infectious Disease Modelling.
[14] Sapto W. Indratno,et al. Estimation of the Basic Reproductive Ratio for Dengue Fever at the Take-Off Period of Dengue Infection , 2015, Comput. Math. Methods Medicine.
[15] D. Focks,et al. Transmission thresholds for dengue in terms of Aedes aegypti pupae per person with discussion of their utility in source reduction efforts. , 2000, The American journal of tropical medicine and hygiene.
[16] K. Chinna,et al. Dengue in Malaysia: Factors Associated with Dengue Mortality from a National Registry , 2016, PloS one.
[17] B. Benjamin,et al. ABRIDGED LIFE TABLES , 1939 .
[18] 総務省統計局. 人口推計 = Current population estimates , 2010 .
[19] E. Massad,et al. A comparative analysis of three different methods for the estimation of the basic reproduction number of dengue , 2016, Infectious Disease Modelling.
[20] J. Watmough,et al. Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. , 2002, Mathematical biosciences.
[21] M. G. Roberts,et al. A new method for estimating the effort required to control an infectious disease , 2003, Proceedings of the Royal Society of London. Series B: Biological Sciences.
[22] G. Macdonald,et al. The analysis of equilibrium in malaria. , 1952, Tropical diseases bulletin.
[23] N. Hens,et al. Dynamic Epidemiological Models for Dengue Transmission: A Systematic Review of Structural Approaches , 2012, PloS one.
[24] N. C. Dom,et al. Quantifying the Distribution and Abundance of Aedes Mosquitoes in Dengue Risk Areas in Shah Alam, Selangor , 2016 .
[25] C. Dolea,et al. World Health Organization , 1949, International Organization.
[26] E. Massad,et al. MODELING THE EFFECT OF A NOVEL AUTO-DISSEMINATION TRAP ON THE SPREAD OF DENGUE IN HIGH-RISE CONDOMINIA, MALAYSIA , 2018, Journal of Biological Systems.
[27] Mohammed Derouich,et al. Dengue fever: Mathematical modelling and computer simulation , 2006, Appl. Math. Comput..