On Probabilistic Term Rewriting

We study the termination problem for probabilistic term rewrite systems. We prove that the interpretation method is sound and complete for a strengthening of positive almost sure termination, when abstract reduction systems and term rewrite systems are considered. Two instances of the interpretation method—polynomial and matrix interpretations—are analyzed and shown to capture interesting and nontrivial examples when automated. We capture probabilistic computation in a novel way by means of multidistribution reduction sequences, thus accounting for both the nondeterminism in the choice of the redex and the probabilism intrinsic in firing each rule.

[1]  Georg Moser,et al.  Modular Runtime Complexity Analysis of Probabilistic While Programs , 2019, ArXiv.

[2]  Holger Hermanns,et al.  Probabilistic Termination , 2015, POPL.

[3]  Eugene S. Santos,et al.  Probabilistic Turing machines and computability , 1969 .

[4]  Joost-Pieter Katoen,et al.  Weakest Precondition Reasoning for Expected Runtimes of Randomized Algorithms , 2018, J. ACM.

[5]  Hans Zantema,et al.  Matrix Interpretations for Proving Termination of Term Rewriting , 2006, Journal of Automated Reasoning.

[6]  N. Saheb-Djahromi,et al.  Probabilistic LCF , 1978, International Symposium on Mathematical Foundations of Computer Science.

[7]  Martin L. Puterman,et al.  Markov Decision Processes: Discrete Stochastic Dynamic Programming , 1994 .

[8]  Dieter Hofbauer,et al.  Termination Proofs and the Length of Derivations (Preliminary Version) , 1989, RTA.

[9]  Olivier Bournez,et al.  Proving Positive Almost-Sure Termination , 2005, RTA.

[10]  Krishnendu Chatterjee,et al.  Termination Analysis of Probabilistic Programs Through Positivstellensatz's , 2016, CAV.

[11]  Chang Liu,et al.  Term rewriting and all that , 2000, SOEN.

[12]  Ugo Dal Lago,et al.  Probabilistic operational semantics for the lambda calculus , 2011, RAIRO Theor. Informatics Appl..

[13]  Isabelle Gnaedig,et al.  Induction for positive almost sure termination , 2007, PPDP '07.

[14]  Silvio Micali,et al.  Probabilistic Encryption , 1984, J. Comput. Syst. Sci..

[15]  C. Jones,et al.  A probabilistic powerdomain of evaluations , 1989, [1989] Proceedings. Fourth Annual Symposium on Logic in Computer Science.

[16]  Salvador Lucas,et al.  Polynomials over the reals in proofs of termination: from theory to practice , 2005, RAIRO Theor. Informatics Appl..

[17]  Ugo Dal Lago,et al.  Probabilistic Termination by Monadic Affine Sized Typing , 2017, ESOP.

[18]  Aaron D. Wyner,et al.  Computability by Probabilistic Machines , 1993 .

[19]  Joshua B. Tenenbaum,et al.  Church: a language for generative models , 2008, UAI.

[20]  José Meseguer,et al.  PMaude: Rewrite-based Specification Language for Probabilistic Object Systems , 2006, QAPL.

[21]  Russ Bubley,et al.  Randomized algorithms , 1995, CSUR.

[22]  Annabelle McIver,et al.  A new proof rule for almost-sure termination , 2017, Proc. ACM Program. Lang..

[23]  Enno Ohlebusch,et al.  Term Rewriting Systems , 2002 .

[24]  Van Chan Ngo,et al.  Bounded expectations: resource analysis for probabilistic programs , 2017, PLDI.

[25]  Sriram Sankaranarayanan,et al.  Probabilistic Program Analysis with Martingales , 2013, CAV.

[26]  Joost-Pieter Katoen,et al.  On the Hardness of Almost-Sure Termination , 2015, MFCS.

[27]  Georg Moser,et al.  Automated Complexity Analysis Based on Context-Sensitive Rewriting , 2014, RTA-TLCA.

[28]  Ugo Dal Lago,et al.  On probabilistic term rewriting , 2020, Sci. Comput. Program..

[29]  Christel Baier,et al.  Probabilistic ω-automata , 2012, JACM.

[30]  Jürgen Giesl,et al.  SAT Solving for Termination Analysis with Polynomial Interpretations , 2007, SAT.

[31]  Krishnendu Chatterjee,et al.  Termination of Nondeterministic Probabilistic Programs , 2019, VMCAI.

[32]  Akihisa Yamada,et al.  Nagoya Termination Tool , 2014, RTA-TLCA.

[33]  Claude Kirchner,et al.  Probabilistic Rewrite Strategies. Applications to ELAN , 2002, RTA.

[34]  Ugo Dal Lago,et al.  On Constructor Rewrite Systems and the Lambda-Calculus , 2009, ICALP.

[35]  Olivier Bournez,et al.  Proving Positive Almost Sure Termination Under Strategies , 2006, RTA.

[36]  John T. Gill,et al.  Computational complexity of probabilistic Turing machines , 1974, STOC '74.