Reduced order state estimators for discrete-time stochastic systems

A reduced order, least squares, state estimator is developed for linear discrete-time systems having both input disturbance noise and output measurement noise with no output being free of measurement noise. The order reduction is achieved by using a Luenberger observer in connection with some of the system outputs and a Kalman filter to estimate the state of the Luenberger observer. The order of the resulting state estimator is reduced from the order of the usual Kalman filter system state estimator by the number of system outputs selected for use as inputs to the Luenberger Observer. The manner in which the noise associated with the selected system outputs affects the state estimation error covariance provides considerable insight into the compromise being attempted.