Increasing the performance of an anion-exchange membrane electrolyzer operating in pure water with a nickel-based microporous layer

[1]  Hyung-Man Kim,et al.  Comprehensive impedance investigation of low-cost anion exchange membrane electrolysis for large-scale hydrogen production , 2021, Scientific Reports.

[2]  P. Kohl,et al.  Ionomer Optimization for Water Uptake and Swelling in Anion Exchange Membrane Electrolyzer: Hydrogen Evolution Electrode , 2020, Journal of the Electrochemical Society.

[3]  K. Bouzek,et al.  Overview: State-of-the Art Commercial Membranes for Anion Exchange Membrane Water Electrolysis , 2021 .

[4]  Chunzhong Li,et al.  Integrated Reference Electrodes in Anion-Exchange-Membrane Electrolyzers: Impact of Stainless-Steel Gas-Diffusion Layers and Internal Mechanical Pressure , 2020, ACS Energy Letters.

[5]  Mrinmay Mandal Recent Advancement on Anion Exchange Membranes for Fuel Cell and Water Electrolysis , 2020 .

[6]  D. Jacobson,et al.  Accelerating Bubble Detachment in Porous Transport Layers with Patterned Through-Pores , 2020 .

[7]  K. Friedrich,et al.  Elucidating the Performance Limitations of Alkaline Electrolyte Membrane Electrolysis: Dominance of Anion Concentration in Membrane Electrode Assembly , 2020 .

[8]  S. Boettcher,et al.  Accelerating water dissociation in bipolar membranes and for electrocatalysis , 2020, Science.

[9]  K. Friedrich,et al.  Improving plasma sprayed Raney-type nickel–molybdenum electrodes towards high-performance hydrogen evolution in alkaline medium , 2020, Scientific Reports.

[10]  K. Bouzek,et al.  Green hydrogen from anion exchange membrane water electrolysis: a review of recent developments in critical materials and operating conditions , 2020, Sustainable Energy & Fuels.

[11]  F. Büchi,et al.  Transient and Steady State Two-Phase Flow in Anodic Porous Transport Layer of Proton Exchange Membrane Water Electrolyzer , 2020, Journal of The Electrochemical Society.

[12]  Joonhee Kang,et al.  TiO2/ZrO2 Nanoparticle Composites for Electrochemical Hydrogen Evolution , 2020 .

[13]  S. Shimpalee,et al.  Effects of the Transport/Catalyst Layer Interface and Catalyst Loading on Mass and Charge Transport Phenomena in Polymer Electrolyte Membrane Water Electrolysis Devices , 2020 .

[14]  E. Tsotsas,et al.  Steady-State Water Drainage by Oxygen in Anodic Porous Transport Layer of Electrolyzers: A 2D Pore Network Study , 2020, Processes.

[15]  Cy H. Fujimoto,et al.  Highly quaternized polystyrene ionomers for high performance anion exchange membrane water electrolysers , 2020 .

[16]  W. Schade,et al.  Femtosecond laser-induced surface structuring of the porous transport layers in proton exchange membrane water electrolysis , 2020, Journal of Materials Chemistry A.

[17]  Xianghui Xiao,et al.  Interfacial analysis of a PEM electrolyzer using X-ray computed tomography , 2020, Sustainable Energy & Fuels.

[18]  D. Stolten,et al.  Impact of porous transport layer compression on hydrogen permeation in PEM water electrolysis , 2020, International Journal of Hydrogen Energy.

[19]  V. Schulz,et al.  Temperature-dependent gas accumulation in polymer electrolyte membrane electrolyzer porous transport layers , 2020 .

[20]  H. Gasteiger,et al.  Current Challenges in Catalyst Development for PEM Water Electrolyzers , 2020, Chemie Ingenieur Technik.

[21]  D. Bessarabov,et al.  Current Density Distribution of Electrolyzer Flow Fields: In Situ Current Mapping and Neutron Radiography , 2020 .

[22]  Jeremy L. Hitt,et al.  Renewable electricity storage using electrolysis , 2019, Proceedings of the National Academy of Sciences.

[23]  S. Shiva Kumar,et al.  Hydrogen production by PEM water electrolysis – A review , 2019 .

[24]  F. Marone,et al.  Hierarchically Structured Porous Transport Layers for Polymer Electrolyte Water Electrolysis , 2019, Advanced Energy Materials.

[25]  D. Aili,et al.  Ion-solvating membranes as a new approach towards high rate alkaline electrolyzers , 2019, Energy & Environmental Science.

[26]  S. Holdcroft,et al.  High Performance Anion Exchange Membrane Electrolysis Using Plasma-Sprayed, Non-Precious-Metal Electrodes , 2019, ACS Applied Energy Materials.

[27]  A. Bazylak,et al.  Pore network modelling to enhance liquid water transport through porous transport layers for polymer electrolyte membrane electrolyzers , 2019, Journal of Power Sources.

[28]  Jesus Rodriguez,et al.  Simple and Precise Approach for Determination of Ohmic Contribution of Diaphragms in Alkaline Water Electrolysis , 2019, Membranes.

[29]  Wenge Li,et al.  Porosity and Its Significance in Plasma-Sprayed Coatings , 2019, Coatings.

[30]  Detlef Stolten,et al.  Initial approaches in benchmarking and round robin testing for proton exchange membrane water electrolyzers , 2019, International Journal of Hydrogen Energy.

[31]  Yifan Li,et al.  Wettability effects of thin titanium liquid/gas diffusion layers in proton exchange membrane electrolyzer cells , 2019, Electrochimica Acta.

[32]  M. Bram,et al.  Manufacturing of Large‐Scale Titanium‐Based Porous Transport Layers for Polymer Electrolyte Membrane Electrolysis by Tape Casting , 2019, Advanced Engineering Materials.

[33]  F. Büchi,et al.  Polymer Electrolyte Water Electrolysis: Correlating Porous Transport Layer Structural Properties and Performance: Part I. Tomographic Analysis of Morphology and Topology , 2019, Journal of The Electrochemical Society.

[34]  James L. Young,et al.  Performance enhancement of PEM electrolyzers through iridium-coated titanium porous transport layers , 2018, Electrochemistry Communications.

[35]  S. Sunde,et al.  Highly Active Nickel-Based Catalyst for Hydrogen Evolution in Anion Exchange Membrane Electrolysis , 2018, Catalysts.

[36]  D. Brett,et al.  Effect of Microstructure of Porous Transport Layer on Performance in Polymer Electrolyte Membrane Water Electrolyser , 2018, Energy Procedia.

[37]  Zhichuan J. Xu,et al.  Heterostructured Electrocatalysts for Hydrogen Evolution Reaction Under Alkaline Conditions , 2018, Nano-Micro Letters.

[38]  M. Ishida,et al.  Experimental investigation of electrolytic solution for anion exchange membrane water electrolysis , 2018, International Journal of Hydrogen Energy.

[39]  N. Briguglio,et al.  Electrochemical Impedance Spectroscopy as a Diagnostic Tool in Polymer Electrolyte Membrane Electrolysis , 2018, Materials.

[40]  Y. Jiao,et al.  The Hydrogen Evolution Reaction in Alkaline Solution: From Theory, Single Crystal Models, to Practical Electrocatalysts. , 2018, Angewandte Chemie.

[41]  Development of dynamic simulator of alkaline water electrolyzer for optimizing renewable energy systems , 2018 .

[42]  S. Shanmugam,et al.  CoS2–TiO2 hybrid nanostructures: efficient and durable bifunctional electrocatalysts for alkaline electrolyte membrane water electrolyzers , 2018 .

[43]  Dmitri Bessarabov,et al.  Low cost hydrogen production by anion exchange membrane electrolysis: A review , 2018 .

[44]  Samuel Simon Araya,et al.  Model-supported characterization of a PEM water electrolysis cell for the effect of compression , 2018 .

[45]  Daniel V. Esposito Membraneless Electrolyzers for Low-Cost Hydrogen Production in a Renewable Energy Future , 2017 .

[46]  K. A. Friedrich,et al.  Comprehensive investigation of novel pore-graded gas diffusion layers for high-performance and cost-effective proton exchange membrane electrolyzers , 2017 .

[47]  Y. Sung,et al.  A Review on Membranes and Catalysts for Anion Exchange Membrane Water Electrolysis Single Cells , 2017 .

[48]  W. Tillmann,et al.  Porosity Characterization and Its Effect on Thermal Properties of APS-Sprayed Alumina Coatings , 2017, Coatings.

[49]  K. A. Friedrich,et al.  Low-Cost and Durable Bipolar Plates for Proton Exchange Membrane Electrolyzers , 2017, Scientific Reports.

[50]  Y. H. Jang,et al.  Fe-Treated Heteroatom (S/N/B/P)-Doped Graphene Electrocatalysts for Water Oxidation , 2017 .

[51]  Hang Guo,et al.  Gas/Water and Heat Management of PEM-Based Fuel Cell and Electrolyzer Systems for Space Applications , 2017 .

[52]  M. Eikerling,et al.  How to Enhance Gas Removal from Porous Electrodes? , 2016, Scientific Reports.

[53]  Z. Ye,et al.  Improved gas diffusion within microchanneled cathode supports of SOECs for steam electrolysis , 2016 .

[54]  Todd J. Toops,et al.  Discovery of true electrochemical reactions for ultrahigh catalyst mass activity in water splitting , 2016, Science Advances.

[55]  S. Shanmugam,et al.  Inexpensive electrochemical synthesis of nickel iron sulphides on nickel foam: super active and ultra-durable electrocatalysts for alkaline electrolyte membrane water electrolysis , 2016 .

[56]  Uwe Reimer,et al.  An analysis of degradation phenomena in polymer electrolyte membrane water electrolysis , 2016 .

[57]  Todd J. Toops,et al.  Thin liquid/gas diffusion layers for high-efficiency hydrogen production from water splitting , 2016 .

[58]  K. A. Friedrich,et al.  Protective coatings on stainless steel bipolar plates for proton exchange membrane (PEM) electrolysers , 2016 .

[59]  J. Franco,et al.  Water electrolysis with Zirfon® as separator and NaOH as electrolyte , 2015 .

[60]  L. J. Berchmans,et al.  Fabrication of spinel ferrite based alkaline anion exchange membrane water electrolysers for hydrogen production , 2015 .

[61]  Zhigang Shao,et al.  Investigations on degradation of the long-term proton exchange membrane water electrolysis stack , 2014 .

[62]  K. Ayers,et al.  Degradation of anion exchange membranes used for hydrogen production by ultrapure water electrolysis , 2014 .

[63]  M. Comotti,et al.  Highly efficient platinum group metal free based membrane-electrode assembly for anion exchange membrane water electrolysis. , 2014, Angewandte Chemie.

[64]  K. S. Dhathathreyan,et al.  Graphene oxide modified non-noble metal electrode for alkaline anion exchange membrane water electrolyzers , 2013 .

[65]  César A.C. Sequeira,et al.  Hydrogen production by alkaline water electrolysis , 2013 .

[66]  N. Briguglio,et al.  Polymer electrolyte membrane water electrolysis: status of technologies and potential applications in combination with renewable power sources , 2013, Journal of Applied Electrochemistry.

[67]  S. Grigoriev,et al.  Cell failure mechanisms in PEM water electrolyzers , 2012 .

[68]  Lin Zhuang,et al.  First implementation of alkaline polymer electrolyte water electrolysis working only with pure water , 2012 .

[69]  Chaoyang Wang,et al.  Solid-state water electrolysis with an alkaline membrane. , 2012, Journal of the American Chemical Society.

[70]  Dongke Zhang,et al.  Recent progress in alkaline water electrolysis for hydrogen production and applications , 2010 .

[71]  Claude Etievant,et al.  Hydrogen safety aspects related to high-pressure polymer electrolyte membrane water electrolysis , 2009 .

[72]  Pierre Millet,et al.  Optimization of porous current collectors for PEM water electrolysers , 2009 .

[73]  B. Yi,et al.  Electrochemical investigation of electrocatalysts for the oxygen evolution reaction in PEM water electrolyzers , 2008 .

[74]  N. Caron,et al.  Gas Permeability of Porous Plasma-Sprayed Coatings , 2008, International Thermal Spray Conference.

[75]  T. Clyne,et al.  Sintering Kinetics of Plasma-Sprayed Zirconia TBCs , 2007, International Thermal Spray Conference.

[76]  S. Grigoriev,et al.  Pure hydrogen production by PEM electrolysis for hydrogen energy , 2006 .

[77]  Tae-Hee Lee,et al.  Influence of pore-size distribution of diffusion layer on mass-transport problems of proton exchange membrane fuel cells , 2002 .

[78]  Norman Epstein,et al.  On tortuosity and the tortuosity factor in flow and diffusion through porous media , 1989 .