Exploring earth's atmosphere with radio occultation: contributions to weather, climate and space weather

Abstract. The launch of the proof-of-concept mission GPS/MET (Global Positioning System/Meteorology) in 1995 began a revolution in profiling Earth's atmosphere through radio occultation (RO). GPS/MET; subsequent single-satellite missions CHAMP (CHAllenging Minisatellite Payload), SAC-C (Satellite de Aplicaciones Cientificas-C), GRACE (Gravity Recovery and Climate Experiment), METOP-A, and TerraSAR-X (Beyerle et al., 2010); and the six-satellite constellation, FORMOSAT-3/COSMIC (Formosa Satellite mission {#}3/Constellation Observing System for Meteorology, Ionosphere, and Climate) have proven the theoretical capabilities of RO to provide accurate and precise profiles of electron density in the ionosphere and refractivity, containing information on temperature and water vapor, in the stratosphere and troposphere. This paper summarizes results from these RO missions and the applications of RO observations to atmospheric research and operational weather analysis and prediction.

[1]  M. Rothacher,et al.  Observations and simulations of receiver-induced refractivity biases in GPS radio occultation , 2005, physics/0502052.

[2]  Gottfried Kirchengast,et al.  Retrieval of temperature profiles from CHAMP for climate monitoring: intercomparison with Envisat MIPAS and GOMOS and different atmospheric analyses , 2007 .

[3]  L. Cucurull,et al.  Operational Implementation of COSMIC Observations into NCEP’s Global Data Assimilation System , 2008 .

[4]  Lennart Bengtsson,et al.  GNSS Occultation Sounding for Climate Monitoring , 2001 .

[5]  Ying-Hwa Kuo,et al.  A comparison of lower stratosphere temperature from microwave measurements with CHAMP GPS RO data , 2007 .

[6]  Benjamin M. Herman,et al.  The GPS radio occulation technique , 2000 .

[7]  Jeffrey M. Forbes,et al.  Migrating and nonmigrating semidiurnal tides in the upper atmosphere excited by tropospheric latent heat release: MIGRATING AND NONMIGRATING SEMIDIURNAL TIDES , 2003 .

[8]  Jens Wickert,et al.  Observing upper troposphere–lower stratosphere climate with radio occultation data from the CHAMP satellite , 2008 .

[9]  S. B. Healy,et al.  Forecast impact experiment with a constellation of GPS radio occultation receivers , 2008 .

[10]  Jens Wickert,et al.  Assessing the climate monitoring utility of Radio Occultation data: from CHAMP to FORMOSAT-3/COSMIC. , 2009 .

[11]  Anthony J. Mannucci,et al.  Planetary boundary layer information from GPS radio occultation measurements , 2008 .

[12]  M. E. Gorbunov,et al.  Microlab‐1 experiment: Multipath effects in the lower troposphere , 1998 .

[13]  Grzegorz Michalak,et al.  First results from the GPS atmosphere sounding experiment TOR aboard the TerraSAR-X satellite , 2010 .

[14]  Larry J. Paxton,et al.  Control of equatorial ionospheric morphology by atmospheric tides , 2006 .

[15]  Anthony J. Mannucci,et al.  Rising and setting GPS occultations by use of open‐loop tracking , 2009 .

[16]  S. Syndergaard,et al.  Preparing for COSMIC: Inversion and Analysis of Ionospheric Data Products , 2006 .

[17]  Jens Wickert,et al.  Variability of the upper troposphere and lower stratosphere observed with GPS radio occultation bending angles and temperatures , 2010 .

[18]  J. Dykema,et al.  Climate Benchmarking Using GNSS Occultation , 2006 .

[19]  Jeffrey M. Forbes,et al.  Observations of the ionospheric response to the 15 December 2006 geomagnetic storm: Long‐duration positive storm effect , 2009 .

[20]  W. G. Melbourne,et al.  Initial Results of Radio Occultation Observations of Earth's Atmosphere Using the Global Positioning System , 1996, Science.

[21]  Christian Rocken,et al.  The COSMIC/FORMOSAT-3 Mission: Early Results , 2008 .

[22]  Anthony J. Mannucci,et al.  Lower troposphere refractivity bias in GPS occultation retrievals , 2003 .

[23]  Anthony J. Mannucci,et al.  CHAMP and SAC-C atmospheric occultation results and intercomparisons , 2004 .

[24]  H. Benzon,et al.  Geometrical optics phase matching of radio occultation signals , 2004 .

[25]  Ying-Hwa Kuo,et al.  Comparison of COSMIC ionospheric measurements with ground-based observations and model predictions : Preliminary results , 2007 .

[26]  Christian Rocken,et al.  A Global Morphology of Gravity Wave Activity in the Stratosphere Revealed by the GPS Occultation Data (GPS/MET) , 2000 .

[27]  Jann‐Yenq Liu,et al.  Plausible effect of atmospheric tides on the equatorial ionosphere observed by the FORMOSAT‐3/COSMIC: Three‐dimensional electron density structures , 2007 .

[28]  Ying-Hwa Kuo,et al.  Diagnosis of an Intense Atmospheric River Impacting the Pacific Northwest: Storm Summary and Offshore Vertical Structure Observed with COSMIC Satellite Retrievals , 2008 .

[29]  Grzegorz Michalak,et al.  GPS radio occultation: results from CHAMP, GRACE and FORMOSAT-3/COSMIC. , 2009 .

[30]  M. E. Gorbunov,et al.  Algorithms of inversion of Microlab-1 satellite data including effects of multipath propagation , 1998 .

[31]  H. H. Benzon,et al.  Full Spectrum Inversion of radio occultation signals , 2003 .

[32]  D. Lenschow,et al.  Variability of the boundary layer depth over certain regions of the subtropical ocean from 3 years of COSMIC data [presentation] , 2010 .

[33]  J. Schofield,et al.  Observing Earth's atmosphere with radio occultation measurements using the Global Positioning System , 1997 .

[34]  Ying-Hwa Kuo,et al.  Assessment of radiosonde temperature measurements in the upper troposphere and lower stratosphere using COSMIC radio occultation data , 2009 .

[35]  W. Bertiger,et al.  A technical description of atmospheric sounding by GPS occultation , 2002 .

[36]  Jean-Noël Thépaut,et al.  Assimilation experiments with CHAMP GPS radio occultation measurements , 2006 .

[37]  Ying-Hwa Kuo,et al.  Estimating the uncertainty of using GPS radio occultation data for climate monitoring: Intercomparison of CHAMP refractivity climate records from 2002 to 2006 from different data centers , 2009 .

[38]  T. Shepherd,et al.  Extended Canadian Middle Atmosphere Model: Zonal‐mean climatology and physical parameterizations , 2002 .

[39]  C. Rocken,et al.  Atmospheric sounding using GPS radio occultation , 2022, MAUSAM.

[40]  J. Wickert,et al.  Atmospheric sounding by global navigation satellite system radio occultation: An analysis of the negative refractivity bias using CHAMP observations , 2004 .

[41]  S. Sokolovskiy Effect of superrefraction on inversions of radio occultation signals in the lower troposphere , 2003 .

[42]  Lou‐Chuang Lee,et al.  Special Issue for Applications of the Constellation Observing System for Meteorology, Ionosphere and Climate(COSMIC)-Preface , 2000 .

[43]  Gerald R. North,et al.  Testing climate models : An approach , 1998 .

[44]  Chien-Hung Lin,et al.  Midlatitude summer nighttime anomaly of the ionospheric electron density observed by FORMOSAT‐3/COSMIC , 2010 .

[45]  U. Foelsche,et al.  Atmospheric temperature change detection with GPS radio occultation 1995 to 2008 , 2009 .

[46]  Christian Rocken,et al.  A GPS/MET Sounding through an Intense Upper-Level Front. , 1998 .

[47]  Xinan Yue,et al.  Error analysis of Abel retrieved electron density profiles from radio occultation measurements , 2010 .

[48]  W. Randel,et al.  Kelvin wave variability near the equatorial tropopause observed in GPS radio occultation measurements , 2005 .

[49]  Thomas P. Yunck,et al.  A History of GPS Sounding , 2000 .

[50]  Juha-Pekka Luntama,et al.  Prospects of the EPS GRAS Mission For Operational Atmospheric Applications , 2008 .

[51]  Ying-Hwa Kuo,et al.  Observing the moist troposphere with radio occultation signals from COSMIC , 2007 .

[52]  M. Gorbunov,et al.  Analysis of wave fields by Fourier integral operators and their application for radio occultations , 2004 .

[53]  X. Zou,et al.  Analysis and validation of GPS/MET data in the neutral atmosphere , 1997 .

[54]  Gottfried Kirchengast,et al.  An assessment of differences in lower stratospheric temperature records from (A)MSU, radiosondes, and GPS radio occultation , 2011 .

[55]  Christian Rocken,et al.  Applications of COSMIC to Meteorology and Climate , 2000 .

[56]  Gottfried Kirchengast,et al.  A multi-year comparison of lower stratospheric temperatures from CHAMP radio occultation data with MSU/AMSU records , 2007 .

[57]  Jens Wickert,et al.  Using CHAMP radio occultation data to determine the top altitude of the Planetary Boundary Layer , 2005 .

[58]  Rolf König,et al.  Atmosphere sounding by GPS radio occultation: First results from CHAMP , 2001 .

[59]  Xiaoqing Pi,et al.  Development of the Global Assimilative Ionospheric Model , 2004 .

[60]  Christian Rocken,et al.  Analysis and validation of GPS/MET radio occultation data in the ionosphere , 1999 .

[61]  Lennart Bengtsson,et al.  An observing system simulation experiment for climate monitoring with GNSS radio occultation data: Setup and test bed study , 2008 .

[62]  Y. Kuo,et al.  Improved Analyses and Forecasts of Hurricane Ernesto's Genesis Using Radio Occultation Data in an Ensemble Filter Assimilation System , 2012 .

[63]  Douglas Hunt,et al.  Estimates of the precision of GPS radio occultations from the COSMIC/FORMOSAT‐3 mission , 2007 .

[64]  W. G. Melbourne,et al.  The application of spaceborne GPS to atmospheric limb sounding and global change monitoring , 1994 .

[65]  J. B. Thomas,et al.  Controlled-root formulation for digital phase-locked loops , 1995 .

[66]  R. Reynolds,et al.  The NCEP/NCAR 40-Year Reanalysis Project , 1996, Renewable Energy.

[67]  G. Kirchengast,et al.  Gravity Wave Spectra from GPS/MET Occultation Observations , 2000 .

[68]  Jann‐Yenq Liu,et al.  Longitudinal structure of the equatorial ionosphere: Time evolution of the four-peaked EIA structure , 2007 .

[69]  Xiaoqing Pi,et al.  COSMIC GPS Ionospheric Sensing and Space Weather , 2000 .

[70]  Kefei Zhang,et al.  The beneficial impact of radio occultation observations on Australian region forecasts , 2010 .

[71]  Barbara Scherllin-Pirscher,et al.  Refractivity and temperature climate records from multiple radio occultation satellites consistent within 0.05 , 2011 .

[72]  Timothy Fuller-Rowell,et al.  Global Assimilation of Ionospheric Measurements (GAIM) , 2001 .

[73]  Thomas K. Meehan,et al.  Generating climate benchmark atmospheric soundings using GPS occultation data , 2006, SPIE Optics + Photonics.

[74]  M. Ratnam,et al.  A robust method to determine global distribution of atmospheric boundary layer top from COSMIC GPS RO measurements , 2010 .

[75]  Fei Wu,et al.  Thermal variability of the tropical tropopause region derived from GPS/MET observations , 2003 .

[76]  Xinan Yue,et al.  Data assimilation retrieval of electron density profiles from radio occultation measurements [presentation] , 2011 .

[77]  Rolf König,et al.  The Radio Occultation Experiment aboard CHAMP: Operational Data Analysis and Validation of Vertical Atmospheric Profiles , 2004 .

[78]  Y. Kuo,et al.  Analysis of migrating diurnal tides detected in FORMOSAT-3/COSMIC temperature data , 2010 .

[79]  M. E. Gorbunov,et al.  Canonical transform method for processing radio occultation data in the lower troposphere , 2002 .

[80]  Gottfried Kirchengast,et al.  Inversion, error analysis, and validation of GPS/MET occultation data , 1999 .

[81]  L. Cucurull Improvement in the Use of an Operational Constellation of GPS Radio Occultation Receivers in Weather Forecasting , 2010 .

[82]  J. R. Eyre,et al.  Retrieving temperature, water vapour and surface pressure information from refractive‐index profiles derived by radio occultation: A simulation study , 2000 .

[83]  Jens Wickert,et al.  Global tropopause height trends estimated from GPS radio occultation data , 2008 .

[84]  S. Sokolovskiy,et al.  Effect of sporadic E clouds on GPS radio occultation signals , 2010 .

[85]  C. Cardinali Monitoring the observation impact on the short‐range forecast , 2009 .

[86]  R. Leitinger,et al.  Ionosphere tomography with data from satellite reception of Global Navigation Satellite System signals and ground reception of Navy Navigation Satellite System signals , 1997 .

[87]  Bruce A. Wielicki,et al.  Satellite Instrument Calibration for Measuring Global Climate Change: Report of a Workshop , 2004 .

[88]  Sergey Sokolovskiy,et al.  Tracking tropospheric radio occultation signals from low Earth orbit , 2001 .

[89]  Douglas Hunt,et al.  Postprocessing of L1 GPS radio occultation signals recorded in open‐loop mode , 2009 .

[90]  John A. Dykema,et al.  Testing climate models using GPS radio occultation: A sensitivity analysis , 2006 .

[91]  K. Hocke,et al.  Inversion of GPS meteorology data , 1997 .

[92]  U. Foelsche,et al.  Tropical tropopause climatology as observed with radio occultation measurements from CHAMP compared to ECMWF and NCEP analyses , 2007 .

[93]  Ying-Hwa Kuo,et al.  Monitoring the atmospheric boundary layer by GPS radio occultation signals recorded in the open‐loop mode , 2006 .

[94]  Christian Rocken,et al.  Inversion and error estimation of GPS radio occultation Data , 2004 .

[95]  Jeffrey M. Forbes,et al.  Migrating and nonmigrating diurnal tides in the middle and upper atmosphere excited by tropospheric latent heat release , 2002 .

[96]  Xiaoqing Pi,et al.  JPL/USC GAIM: On the impact of using COSMIC and ground‐based GPS measurements to estimate ionospheric parameters , 2010 .

[97]  C. Deser,et al.  Detection of migrating diurnal tide in the tropical upper troposphere and lower stratosphere using the Challenging Minisatellite Payload radio occultation data , 2008 .

[98]  Ying-Hwa Kuo,et al.  Calibration of temperature in the lower stratosphere from microwave measurements using COSMIC radio occultation data: Preliminary results , 2009 .

[99]  C. Marquardt,et al.  Forecast impact experiment with GPS radio occultation measurements , 2005 .

[100]  Ying-Hwa Kuo,et al.  Using SI-traceable global positioning system radio occultation measurements for climate monitoring [In "State of the Climate in 2009"] , 2010 .

[101]  Gottfried Kirchengast,et al.  Advancements of Global Navigation Satellite System radio occultation retrieval in the upper stratosphere for optimal climate monitoring utility , 2004 .

[102]  S. B. Healy,et al.  Monitoring twenty‐first century climate using GPS radio occultation bending angles , 2008 .

[103]  Ying-Hwa Kuo,et al.  Assimilation of GPS refractivity from FORMOSAT-3/COSMIC: Using a nonlocal operator with WRF 3DVAR and its impact on the prediction of a typhoon event , 2009 .

[104]  A. Mannucci,et al.  Atmospheric diurnal variations observed with GPS radio occultation soundings , 2010 .

[105]  John R. Christy,et al.  Error Estimates of Version 5.0 of MSU–AMSU Bulk Atmospheric Temperatures , 2003 .

[106]  W. Randel,et al.  The Polar Summer Tropopause Inversion Layer , 2010 .

[107]  Steven Businger,et al.  GPS Sounding of the Atmosphere from Low Earth Orbit: Preliminary Results , 1996 .

[108]  T. Fang,et al.  Motions of the equatorial ionization anomaly crests imaged by FORMOSAT‐3/COSMIC , 2007 .

[109]  Y. Kuo,et al.  Construction of Consistent Temperature Records in the Lower Stratosphere Using Global Positioning System Radio Occultation Data and Microwave Sounding Measurements , 2009 .

[110]  Douglas Hunt,et al.  GPS profiling of the lower troposphere from space: Inversion and demodulation of the open‐loop radio occultation signals , 2006 .

[111]  M. E. Gorbunov,et al.  Analysis and validation of GPS/MET radio occultation data , 2001 .

[112]  Gottfried Kirchengast,et al.  Atmospheric Climate Change Detection by Radio Occultation Data Using a Fingerprinting Method , 2011 .

[113]  Robert W. Schunk,et al.  Utah State University Global Assimilation of Ionospheric Measurements Gauss‐Markov Kalman filter model of the ionosphere: Model description and validation , 2006 .

[114]  Jens Wickert,et al.  GPS radio occultation with CHAMP and SAC-C: global monitoring of thermal tropopause parameters , 2005 .

[115]  Ying-Hwa Kuo,et al.  Comparison of GPS radio occultation soundings with radiosondes , 2005 .

[116]  Jens Wickert,et al.  Semidiurnal tidal signature in sporadic E occurrence rates derived from GPS radio occultation measurements at higher midlatitudes , 2009 .