A Semismooth Predictor Corrector Method for Suboptimal Model Predictive Control

Suboptimal model predictive control is a technique that can reduce the computational cost of model predictive control (MPC) by exploiting its robustness to incomplete optimization. Instead of solving the optimal control problem exactly, this method maintains an estimate of the optimal solution and updates it at each sampling instance. The resulting controller can be viewed as a dynamic compensator which runs in parallel with the plant. This paper explores the use of the semismooth predictor-corrector method to implement suboptimal MPC. The dynamic interconnection of the combined plant-optimizer system is studied using the input-to-state stability framework and sufficient conditions for closed-loop asymptotic stability and constraint enforcement are derived using small gain arguments. Numerical simulations demonstrate the efficacy of the scheme.

[1]  R. Tyrrell Rockafellar,et al.  An Euler-Newton Continuation Method for Tracking Solution Trajectories of Parametric Variational Inequalities , 2013, SIAM J. Control. Optim..

[2]  MORITZ DIEHL,et al.  A Real-Time Iteration Scheme for Nonlinear Optimization in Optimal Feedback Control , 2005, SIAM J. Control. Optim..

[3]  David Q. Mayne,et al.  Model predictive control: Recent developments and future promise , 2014, Autom..

[4]  R. Rockafellar,et al.  Implicit Functions and Solution Mappings , 2009 .

[5]  Andreas Kugi,et al.  Stability and Incremental Improvement of Suboptimal MPC Without Terminal Constraints , 2010, IEEE Transactions on Automatic Control.

[6]  Lorenz T. Biegler,et al.  Large-scale Optimization Formulations and Strategies for Nonlinear Model Predictive Control , 2018 .

[7]  Colin Neil Jones,et al.  A Parametric Nonconvex Decomposition Algorithm for Real-Time and Distributed NMPC , 2016, IEEE Transactions on Automatic Control.

[8]  Victor M. Zavala,et al.  Real-Time Nonlinear Optimization as a Generalized Equation , 2010, SIAM J. Control. Optim..

[9]  Manfred Morari,et al.  Multi-Parametric Toolbox 3.0 , 2013, 2013 European Control Conference (ECC).

[10]  L. Biegler,et al.  Nonlinear Programming Properties for Stable and Robust NMPC , 2015 .

[11]  Defeng Sun,et al.  On NCP-Functions , 1999, Comput. Optim. Appl..

[12]  Knut Graichen A fixed-point iteration scheme for real-time model predictive control , 2012, Autom..

[13]  Alejandro Ribeiro,et al.  A Prediction-Correction Method for Model Predictive Control , 2018, 2018 Annual American Control Conference (ACC).

[14]  Zhong-Ping Jiang,et al.  Nonlinear small-gain theorems for discrete-time feedback systems and applications , 2004, Autom..

[15]  Houyuan Jiang,et al.  Semismooth Karush-Kuhn-Tucker Equations and Convergence Analysis of Newton and Quasi-Newton Methods for Solving these Equations , 1997, Math. Oper. Res..

[16]  D. Limón,et al.  Input-to-State Stability: A Unifying Framework for Robust Model Predictive Control , 2009 .

[17]  Liqun Qi,et al.  A nonsmooth version of Newton's method , 1993, Math. Program..

[18]  F. Clarke Optimization And Nonsmooth Analysis , 1983 .

[19]  Victor M. Zavala,et al.  The advanced-step NMPC controller: Optimality, stability and robustness , 2009, Autom..

[20]  James B. Rawlings,et al.  On the inherent robustness of optimal and suboptimal nonlinear MPC , 2017, Syst. Control. Lett..

[21]  A. Fischer A special newton-type optimization method , 1992 .

[22]  Dinh Quoc Tran,et al.  Adjoint-Based Predictor-Corrector Sequential Convex Programming for Parametric Nonlinear Optimization , 2012, SIAM J. Optim..

[23]  Ilya V. Kolmanovsky,et al.  Embedding Constrained Model Predictive Control in a Continuous-Time Dynamic Feedback , 2017, IEEE Transactions on Automatic Control.

[24]  Zhong-Ping Jiang,et al.  Input-to-state stability for discrete-time nonlinear systems , 1999 .

[25]  Ilya V. Kolmanovsky,et al.  A Semismooth Predictor Corrector Method for Real-Time Constrained Parametric Optimization with Applications in Model Predictive Control , 2018, 2018 IEEE Conference on Decision and Control (CDC).

[26]  Stephen J. Wright,et al.  Conditions under which suboptimal nonlinear MPC is inherently robust , 2011, Syst. Control. Lett..

[27]  Moritz Diehl,et al.  CasADi: a software framework for nonlinear optimization and optimal control , 2018, Mathematical Programming Computation.

[28]  Martin Guay,et al.  A design technique for fast sampled-data nonlinear model predictive control with convergence and stability results , 2020, Int. J. Control.

[29]  G. Martin,et al.  Nonlinear model predictive control , 1999, Proceedings of the 1999 American Control Conference (Cat. No. 99CH36251).

[30]  D. Q. Mayne,et al.  Suboptimal model predictive control (feasibility implies stability) , 1999, IEEE Trans. Autom. Control..

[31]  Lars Grüne,et al.  Analysis of unconstrained NMPC schemes with incomplete optimization , 2010 .

[32]  M. Diehl,et al.  Nominal stability of real-time iteration scheme for nonlinear model predictive control , 2005 .