Spontaneous alloy composition ordering in GaAs-AlGaAs core-shell nanowires.

By employing various high-resolution metrology techniques we directly probe the material composition profile within GaAs-Al0.3Ga0.7As core-shell nanowires grown by molecular beam epitaxy on silicon. Micro Raman measurements performed along the entire (>10 μm) length of the [111]-oriented nanowires reveal excellent average compositional homogeneity of the nominally Al0.3Ga0.7As shell. In strong contrast, along the radial direction cross-sectional scanning transmission electron microscopy and associated chemical analysis reveal rich structure in the AlGaAs alloy composition due to interface segregation, nanofaceting, and local alloy fluctuations. Most strikingly, we observe a 6-fold Al-rich substructure along the corners of the hexagonal AlGaAs shell where the Al-content is up to x ~ 0.6, a factor of 2 larger than the body of the AlGaAs shell. This is associated with facet-dependent capillarity diffusion due to the nonplanarity of shell growth. A modulation of the Al-content is also found along the radial [110] growth directions of the AlGaAs shell. Besides the ~10(3)-fold enhancement of the photoluminescence yield due to inhibition of nonradiative surface recombination, the AlGaAs shell gives rise to a broadened band of sharp-line luminescence features extending ~150-30 meV below the band gap of Al0.3Ga0.7As. These features are attributed to deep level defects under influence of the observed local alloy fluctuations in the shell.

[1]  F. Himpsel,et al.  The oxidation of GaAs(110): A reevaluation , 1984 .

[2]  H. Okamoto,et al.  Si and Sn Doping in AlxGa1-xAs Grown by MBE , 1982 .

[3]  G. Abstreiter,et al.  Prismatic quantum heterostructures synthesized on molecular-beam epitaxy GaAs nanowires. , 2008, Small.

[4]  L. Samuelson,et al.  Phase segregation in AlInP shells on GaAs nanowires. , 2006, Nano letters.

[5]  H. Cummins,et al.  Light scattering in solids , 1979 .

[6]  Joachim P. Spatz,et al.  X-ray photoelectron spectroscopy study on gold nanoparticles supported on diamond , 2002 .

[7]  A. Gossard,et al.  Alloy Clustering inGa1−xAlxAsCompound Semiconductors Grown by Molecular Beam Epitaxy , 1982 .

[8]  Yong Ding,et al.  Multi-quantum-well nanowire heterostructures for wavelength-controlled lasers. , 2008, Nature materials.

[9]  Lars Samuelson,et al.  Semiconductor nanowires for 0D and 1D physics and applications , 2004 .

[10]  B. Deveaud,et al.  Optical determination of the AlxGa1−xAs energy gap variation versus the Al concentration in MBE-grown samples , 1987 .

[11]  G. Abstreiter,et al.  Free standing modulation doped core–shell GaAs/AlGaAs hetero‐nanowires , 2011 .

[12]  Lyubov V. Titova,et al.  Temperature dependence of photoluminescence from single core-shell GaAs–AlGaAs nanowires , 2006 .

[13]  Fred H. Pollak,et al.  Raman scattering in alloy semiconductors: Spatial correlation model , 1984 .

[14]  Matthias Scheffler,et al.  Novel Diffusion Mechanism on the GaAs(001) Surface: The Role of Adatom-Dimer Interaction , 1997 .

[15]  J. Morante,et al.  Long range epitaxial growth of prismatic heterostructures on the facets of catalyst-free GaAs nanowires , 2009 .

[16]  Takashi Fukui,et al.  Fabrication and characterization of freestanding GaAs/AlGaAs core-shell nanowires and AlGaAs nanotubes by using selective-area metalorganic vapor phase epitaxy , 2005 .

[17]  S. Houde-Walter,et al.  Dependence of Al‐Ga interdiffusion in AlGaAs on stoichiometry between Ga‐rich and As‐rich solidus limits , 1992 .

[18]  Logan,et al.  Direct-energy-gap dependence on Al concentration in AlxGa , 1988, Physical review. B, Condensed matter.

[19]  G. Abstreiter,et al.  Direct observation of a noncatalytic growth regime for GaAs nanowires. , 2011, Nano letters.

[20]  Charles M. Lieber,et al.  Epitaxial core–shell and core–multishell nanowire heterostructures , 2002, Nature.

[21]  Gerhard Abstreiter,et al.  Raman spectroscopy—A versatile tool for characterization of thin films and heterostructures of GaAs and AlxGa1−xAs , 1978 .

[22]  T. Fukui,et al.  A III–V nanowire channel on silicon for high-performance vertical transistors , 2012, Nature.

[23]  Charles M. Lieber,et al.  Ge/Si nanowire heterostructures as high-performance field-effect transistors , 2006, Nature.

[24]  N. Sawaki,et al.  Structural and optical properties of a catalyst-free GaAs/AlGaAs core–shell nano/microwire grown on (1 1 1)Si substrate , 2010 .

[25]  I. Lindau,et al.  Unified defect model and beyond , 1980 .

[26]  L. Samuelson,et al.  Growth and segregation of GaAs-AlxIn1-xP core-shell nanowires , 2010 .

[27]  E. Kapon,et al.  Mechanisms of Self-Ordering in Nonplanar Epitaxy of Semiconductor Nanostructures , 2002 .

[28]  L. Allard,et al.  Realization of defect-free epitaxial core-shell GaAs/AlGaAs nanowire heterostructures , 2008 .

[29]  Gerhard Abstreiter,et al.  Ga-assisted catalyst-free growth mechanism of GaAs nanowires by molecular beam epitaxy , 2008 .

[30]  H. Rubinsztein-Dunlop,et al.  Effect of conducting polymer molecular weight on nanocrystal growth size for photovoltaic applications , 2006, 2006 International Conference on Nanoscience and Nanotechnology.

[31]  M. Bichler,et al.  Nanometer-scale sharpness in corner-overgrown heterostructures , 2008, 0803.3986.

[32]  Y. Kajikawa,et al.  Effects of the MBE growth temperature on Si-doped AlxGa1-xAs (x=0, 0.26) and HEMT , 1992 .

[33]  Charles M. Lieber,et al.  Dopant-free GaN/AlN/AlGaN radial nanowire heterostructures as high electron mobility transistors. , 2006, Nano letters.

[34]  H. Sakaki,et al.  Control of ridge shape for the formation of nanometer-scale GaAs ridge quantum wires by molecular beam epitaxy , 1995 .

[35]  Hitoshi Tanaka,et al.  Donor‐cation vacancy complex in Si‐doped AlGaAs grown by metalorganic chemical vapor deposition , 1987 .

[36]  Lorenzo Pavesi,et al.  Photoluminescence of AlxGa1−xAs alloys , 1994 .

[37]  Patricia M. Mooney,et al.  Deep donor levels (DX centers) in III‐V semiconductors , 1990 .

[38]  T. Tanaka,et al.  III–V Nanowires on Si Substrate: Selective-Area Growth and Device Applications , 2011, IEEE Journal of Selected Topics in Quantum Electronics.

[39]  Martin Heiss,et al.  Impact of surfaces on the optical properties of GaAs nanowires , 2010 .

[40]  J. Harmand,et al.  Wurtzite GaAs/AlGaAs core–shell nanowires grown by molecular beam epitaxy , 2009, Nanotechnology.

[41]  M. Bichler,et al.  Growth kinetics in position-controlled and catalyst-free InAs nanowire arrays on Si(111) grown by selective area molecular beam epitaxy , 2010 .

[42]  G. Abstreiter,et al.  Crystal structure transfer in core/shell nanowires. , 2011, Nano letters.

[43]  Ningfeng Huang,et al.  Electrical and optical characterization of surface passivation in GaAs nanowires. , 2012, Nano letters.