Measurement-based quantum computation on cluster states

We give a detailed account of the one-way quantum computer, a scheme of quantum computation that consists entirely of one-qubit measurements on a particular class of entangled states, the cluster states. We prove its universality, describe why its underlying computational model is different from the network model of quantum computation, and relate quantum algorithms to mathematical graphs. Further we investigate the scaling of required resources and give a number of examples for circuits of practical interest such as the circuit for quantum Fourier transformation and for the quantum adder. Finally, we describe computation with clusters of finite size.

[1]  Charles H. Bennett,et al.  Logical reversibility of computation , 1973 .

[2]  J.-M. Goethals,et al.  IEEE international symposium on information theory , 1981 .

[3]  P. Benioff Quantum Mechanical Models of Turing Machines That Dissipate No Energy , 1982 .

[4]  R. Feynman Simulating physics with computers , 1999 .

[5]  D. Deutsch Quantum theory, the Church–Turing principle and the universal quantum computer , 1985, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[6]  M. F.,et al.  Bibliography , 1985, Experimental Gerontology.

[7]  D. Deutsch Quantum computational networks , 1989, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[8]  Umesh V. Vazirani,et al.  Quantum complexity theory , 1993, STOC.

[9]  Aharonov,et al.  Quantum random walks. , 1993, Physical review. A, Atomic, molecular, and optical physics.

[10]  Ming Li,et al.  An Introduction to Kolmogorov Complexity and Its Applications , 2019, Texts in Computer Science.

[11]  Andrew Chi-Chih Yao,et al.  Quantum Circuit Complexity , 1993, FOCS.

[12]  Shor,et al.  Scheme for reducing decoherence in quantum computer memory. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[13]  Barenco,et al.  Elementary gates for quantum computation. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[14]  Lov K. Grover A fast quantum mechanical algorithm for database search , 1996, STOC '96.

[15]  Griffiths,et al.  Semiclassical Fourier transform for quantum computation. , 1995, Physical review letters.

[16]  Shor,et al.  Good quantum error-correcting codes exist. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[17]  Peter W. Shor,et al.  Fault-tolerant quantum computation , 1996, Proceedings of 37th Conference on Foundations of Computer Science.

[18]  Barenco,et al.  Quantum networks for elementary arithmetic operations. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[19]  Steane,et al.  Simple quantum error-correcting codes. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[20]  Steane,et al.  Error Correcting Codes in Quantum Theory. , 1996, Physical review letters.

[21]  Seth Lloyd,et al.  Universal Quantum Simulators , 1996, Science.

[22]  Daniel Gottesman,et al.  Stabilizer Codes and Quantum Error Correction , 1997, quant-ph/9705052.

[23]  Lov K. Grover Quantum Mechanics Helps in Searching for a Needle in a Haystack , 1997, quant-ph/9706033.

[24]  Christof Zalka Threshold Estimate for Fault Tolerant Quantum Computing , 1997 .

[25]  A. Calderbank,et al.  Quantum Error Correction and Orthogonal Geometry , 1996, quant-ph/9605005.

[26]  I. Chuang,et al.  Programmable Quantum Gate Arrays , 1997, quant-ph/9703032.

[27]  D. Gottesman Theory of fault-tolerant quantum computation , 1997, quant-ph/9702029.

[28]  E. Knill,et al.  Resilient quantum computation: error models and thresholds , 1997, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[29]  Noam Nisan,et al.  Quantum circuits with mixed states , 1998, STOC '98.

[30]  R. Cleve,et al.  Quantum algorithms revisited , 1997, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[31]  Isaac L. Chuang,et al.  Demonstrating the viability of universal quantum computation using teleportation and single-qubit operations , 1999, Nature.

[32]  Y. Pashkin,et al.  Coherent control of macroscopic quantum states in a single-Cooper-pair box , 1999, Nature.

[33]  I. Chuang,et al.  Quantum Teleportation is a Universal Computational Primitive , 1999, quant-ph/9908010.

[34]  P. Zoller,et al.  Entanglement of Atoms via Cold Controlled Collisions , 1998, quant-ph/9810087.

[35]  Peter W. Shor,et al.  Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer , 1995, SIAM Rev..

[36]  Dirk Schlingemann,et al.  Quantum error-correcting codes associated with graphs , 2000, ArXiv.

[37]  R. Landauer,et al.  Irreversibility and heat generation in the computing process , 1961, IBM J. Res. Dev..

[38]  C. Monroe,et al.  Experimental entanglement of four particles , 2000, Nature.

[39]  Charles H. Bennett Notes on the history of reversible computation , 2000, IBM J. Res. Dev..

[40]  G. Brassard,et al.  Quantum Amplitude Amplification and Estimation , 2000, quant-ph/0005055.

[41]  Stephen A. Fenner,et al.  Universal quantum computation with two- and three-qubit projective measurements , 2001 .

[42]  E. Knill,et al.  A scheme for efficient quantum computation with linear optics , 2001, Nature.

[43]  R Raussendorf,et al.  A one-way quantum computer. , 2001, Physical review letters.

[44]  Michael A. Nielsen,et al.  Universal quantum computation using only projective measurement, quantum memory, and preparation of the 0 state , 2001 .

[45]  Martin Nilsson,et al.  Parallel Quantum Computation and Quantum Codes , 2001, SIAM J. Comput..

[46]  D. W. Leung Two-qubit Projective Measurements are Universal for Quantum Computation , 2001 .

[47]  H. Briegel,et al.  Persistent entanglement in arrays of interacting particles. , 2000, Physical review letters.

[48]  T. Hänsch,et al.  Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms , 2002, Nature.

[49]  P. Joyez,et al.  Manipulating the Quantum State of an Electrical Circuit , 2002, Science.

[50]  Immanuel Bloch,et al.  Collapse and revival of the matter wave field of a Bose–Einstein condensate , 2002, Nature.

[51]  J. Preskill,et al.  Topological quantum memory , 2001, quant-ph/0110143.

[52]  Hans-J. Briegel,et al.  Computational model underlying the one-way quantum computer , 2002, Quantum Inf. Comput..

[53]  R. Jozsa,et al.  On the role of entanglement in quantum-computational speed-up , 2002, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[54]  Immanuel Bloch,et al.  Coherent transport of neutral atoms in spin-dependent optical lattice potentials. , 2003, Physical review letters.

[55]  W Dür,et al.  Entanglement purification for quantum computation. , 2003, Physical review letters.

[56]  L. Landau Fault-tolerant quantum computation by anyons , 2003 .

[57]  D. Leibfried,et al.  Experimental demonstration of a robust, high-fidelity geometric two ion-qubit phase gate , 2003, Nature.

[58]  Yaoyun Shi Both Toffoli and controlled-NOT need little help to do universal quantum computing , 2003, Quantum Inf. Comput..

[59]  F. Schmidt-Kaler,et al.  Realization of the Cirac–Zoller controlled-NOT quantum gate , 2003, Nature.

[60]  J. Preskill,et al.  Confinement Higgs transition in a disordered gauge theory and the accuracy threshold for quantum memory , 2002, quant-ph/0207088.

[61]  M. Lukin,et al.  Controlling spin exchange interactions of ultracold atoms in optical lattices. , 2002, Physical review letters.

[62]  R. Raussendorf,et al.  Computational Model for the One‐Way Quantum Computer: Concepts and Summary , 2005 .

[63]  O. Antoine,et al.  Theory of Error-correcting Codes , 2022 .