Application of Copulas to Modeling Temporal Sampling Errors in Satellite-Derived Rainfall Estimates

The dependence between temporal sampling error in satellite-derived rainfall estimates and rainfall rate is of scientific and practical interest. We explore the use of copulas to construct the needed joint distribution between the sampling error and the corresponding rainfall rate. Our approach is to first estimate the marginal distribution functions in a parametric way, and then use these with a number of copula functions in search of the one most appropriate. We use maximum likelihood to estimate the parameters of the copulas. We select the best-fitted parametric copula function as the one that gives the largest likelihood. Our findings have important implications for the interpretation and propagation studies of remote sensing precipitation uncertainties.

[1]  George J. Huffman,et al.  Estimates of Root-Mean-Square Random Error for Finite Samples of Estimated Precipitation , 1997 .

[2]  Riko Oki,et al.  Sampling simulation of TRMM rainfall estimation using radar-AMeDAS composites , 1994 .

[3]  G. North,et al.  Error Analysis for Some Ground Validation Designs for Satellite Observations of Precipitation , 1999 .

[4]  Thomas L. Bell,et al.  Dependence of Satellite Sampling Error on Monthly Averaged Rain Rates:Comparison of Simple Models and Recent Studies , 2000 .

[5]  H. Joe Multivariate models and dependence concepts , 1998 .

[6]  J. Janowiak,et al.  The Global Precipitation Climatology Project (GPCP) combined precipitation dataset , 1997 .

[7]  A. Kruger,et al.  Archival precipitation data set for the Mississippi River Basin: Algorithm development , 2003 .

[8]  S. Sorooshian,et al.  Intercomparison of rain gauge, radar, and satellite-based precipitation estimates with emphasis on hydrologic forecasting , 2005 .

[9]  W. Krajewski,et al.  Modeling distribution of temporal sampling errors in area-time-averaged rainfall estimates , 2005 .

[10]  Matthias Steiner,et al.  Uncertainty of Estimates of Monthly Areal Rainfall for Temporally Sparse Remote Observations , 1996 .

[11]  Jonathan A. Tawn,et al.  Bivariate extreme value theory: Models and estimation , 1988 .

[12]  J. Susskind,et al.  Global Precipitation at One-Degree Daily Resolution from Multisatellite Observations , 2001 .

[13]  Joachim Weickert,et al.  Scale-Space Theories in Computer Vision , 1999, Lecture Notes in Computer Science.

[14]  G. Hoogenboom,et al.  Archival precipitation data set for the Mississippi River Basin: Evaluation , 2005 .

[15]  Witold F. Krajewski,et al.  Characterization of the temporal sampling error in space‐time‐averaged rainfall estimates from satellites , 2004 .

[16]  H. Künsch The Jackknife and the Bootstrap for General Stationary Observations , 1989 .

[17]  Matthias Steiner,et al.  Comparison of Two Methods for Estimating the Sampling-Related Uncertainty of Satellite Rainfall Averages Based on a Large Radar Dataset , 2003 .

[18]  Bart Nijssen,et al.  Effect of precipitation sampling error on simulated hydrological fluxes and states: Anticipating the Global Precipitation Measurement satellites , 2004 .

[19]  Witold F. Krajewski,et al.  Effect of Temporal Sampling on Inferred Rainfall Spatial Statistics , 2005 .

[20]  Witold F. Krajewski,et al.  Archival precipitation data set for the Mississippi river basin: development of a GIS-based data browser , 2003 .

[21]  S. Sorooshian,et al.  Evaluation of PERSIANN system satellite-based estimates of tropical rainfall , 2000 .