Synthetic Diagnostics in the European Union Integrated Tokamak Modelling Simulation Platform

Abstract The European Union Integrated Tokamak Modelling Task Force (ITM-TF) has developed a standardized platform and an integrated modeling suite of codes for the simulation and prediction of a complete plasma discharge in any tokamak. The framework developed by ITM-TF allows for the development of sophisticated integrated simulations (workflows) for physics application, e.g., free-boundary equilibrium with feedback control, magnetohydrodynamic stability analysis, core/edge plasma transport, and heating and current drive. A significant effort is also under way to integrate synthetic diagnostic modules in the ITM-TF environment, namely, focusing on three-dimensional reflectometry, motional Stark effect, and neutron and neutral particle analyzer diagnostics. This paper gives an overview of the conceptual design of ITM-TF and preliminary results of the aforementioned synthetic diagnostic modules.

[1]  H. Hojo,et al.  Full-wave simulations on ultrashort-pulse reflectometry for helical plasmas , 2004 .

[2]  Comparison of density fluctuation measurements between O-mode and X-mode reflectometry on Tore Supra , 2006 .

[3]  S. Heuraux,et al.  A Numerical Study of Forward- and Backscattering Signatures on Doppler-Reflectometry Signals , 2010, IEEE Transactions on Plasma Science.

[4]  Timo Pättikangas,et al.  Monte Carlo simulation of runaway electrons in a toroidal geometry , 1993 .

[5]  Sylvain Brémond,et al.  Development of a generic multipurpose tokamak plasma discharge flight simulator , 2011 .

[6]  Per Strand,et al.  The way towards thermonuclear fusion simulators , 2007, Comput. Phys. Commun..

[7]  M. Greenwald Verification and validation for magnetic fusiona) , 2010 .

[8]  J. Wilgen,et al.  Optimization studies of the ITER low field side reflectometer. , 2010, The Review of scientific instruments.

[9]  C. Lechte,et al.  Investigation of the Scattering Efficiency in Doppler Reflectometry by Two-Dimensional Full-Wave Simulations , 2009, IEEE Transactions on Plasma Science.

[10]  Jeff M. Candy,et al.  Implementation and application of two synthetic diagnostics for validating simulations of core tokamak turbulence , 2009 .

[11]  M. Schubert,et al.  Reconstruction of the turbulence radial profile from reflectometry phase root mean square measurements , 2012 .

[12]  E. Blanco,et al.  Doppler reflectometry studies using a two-dimensional full-wave code , 2006 .

[13]  S. Heuraux,et al.  Simulations on the Role of the Resonance of the Probing Wave on Reflectometry Measurements in Fluctuating Plasmas , 2010, IEEE Transactions on Plasma Science.

[14]  C. Domier,et al.  A synthetic diagnostic for the evaluation of new microwave imaging reflectometry diagnostics for DIII-D and KSTAR. , 2010, The Review of scientific instruments.

[15]  Study of ITER plasma position reflectometer using a two-dimensional full-wave finite-difference time domain code. , 2008, The Review of scientific instruments.

[16]  N. Hawkes,et al.  Ab initio modeling of the motional Stark effect on MAST. , 2008, The Review of scientific instruments.

[17]  A. Dinklage,et al.  Integrated data analysis of fusion diagnostics by means of the Bayesian probability theory , 2004 .

[18]  J. B. Lister,et al.  Integrated tokamak modelling: Infrastructure and Software Integration Project , 2008 .

[19]  C. N. Klimov,et al.  Investigation of the poloidal spectral resolution of O-mode reflectometry with two-dimensional full-wave modeling , 2009 .

[20]  M. Reich,et al.  Forward Modeling of Motional Stark Effect Spectra , 2011 .

[21]  W. Nevins,et al.  System for simulating fluctuation diagnostics for application to turbulence computations , 2006 .

[22]  Ion cyclotron range of frequency mode conversion physics in Alcator C-Mod: Experimental measurements and modelinga) , 2005 .

[23]  M. Petrov,et al.  Neutral particle analyzer/isotope separator for measurement of hydrogen isotope composition of JET plasmas , 2003 .

[24]  Edward A. Lee,et al.  Scientific workflow management and the Kepler system , 2006, Concurr. Comput. Pract. Exp..

[25]  R. Nazikian,et al.  Coupling of global toroidal Alfvn eigenmodes and reversed shear Alfvn eigenmodes in DIII-D , 2007 .

[26]  J. B. Lister,et al.  A universal access layer for the Integrated Tokamak Modelling Task Force , 2008 .

[27]  M. Reich,et al.  Motional Stark Effect Spectra Simulations for Wendelstein 7‐X , 2010 .

[28]  David R. Smith,et al.  A synthetic diagnostic for validation of electron gyroradius scale turbulence simulations against coherent scattering measurements , 2010 .

[29]  Per Strand,et al.  A generic data structure for integrated modelling of tokamak physics and subsystems , 2010, Comput. Phys. Commun..

[30]  R. Waltz,et al.  Studies of turbulence and transport in Alcator C-Mod ohmic plasmas with phase contrast imaging and comparisons with gyrokinetic simulations , 2008 .

[31]  A. Dinklage,et al.  Bayesian modelling of fusion diagnostics , 2003 .

[32]  J. Svensson,et al.  Forward modeling of JET polarimetry diagnostic. , 2008, The Review of scientific instruments.

[33]  J. Decker,et al.  Fast electron bremsstrahlung in axisymmetric magnetic configuration , 2008 .

[34]  Simulation of reflectometry Bragg backscattering spectral responses in the absence of a cutoff layer. , 2010, The Review of scientific instruments.

[35]  R. Fonck,et al.  Spatial transfer function for the beam emission spectroscopy diagnostic on DIII-D , 2006 .

[36]  Isabel Campos Plasencia,et al.  A European Infrastructure for Fusion Simulations , 2010, 2010 18th Euromicro Conference on Parallel, Distributed and Network-based Processing.