The Presynaptic Active Zone Protein Bassoon Is Essential for Photoreceptor Ribbon Synapse Formation in the Retina

The photoreceptor ribbon synapse is a highly specialized glutamatergic synapse designed for the continuous flow of synaptic vesicles to the neurotransmitter release site. The molecular mechanisms underlying ribbon synapse formation are poorly understood. We have investigated the role of the presynaptic cytomatrix protein Bassoon, a major component of the photoreceptor ribbon, in a mouse retina deficient of functional Bassoon protein. Photoreceptor ribbons lacking Bassoon are not anchored to the presynaptic active zones. This results in an impaired photoreceptor synaptic transmission, an abnormal dendritic branching of neurons postsynaptic to photoreceptors, and the formation of ectopic synapses. These findings suggest a critical role of Bassoon in the formation and the function of photoreceptor ribbon synapses of the mammalian retina.

[1]  H. Kolb,et al.  The organization of photoreceptor to bipolar synapses in the outer plexiform layer , 1995 .

[2]  S. Archer,et al.  Neurobiology and Clinical Aspects of the Outer Retina , 1995, Springer Netherlands.

[3]  L. Vollrath,et al.  Plasticity of retinal ribbon synapses , 1996, Microscopy research and technique.

[4]  Heinz Wässle,et al.  Parallel processing in the mammalian retina , 2004, Nature Reviews Neuroscience.

[5]  T. Südhof,et al.  RIBEYE, a Component of Synaptic Ribbons A Protein's Journey through Evolution Provides Insight into Synaptic Ribbon Function , 2000, Neuron.

[6]  A. C. Meyer,et al.  Functional Inactivation of a Fraction of Excitatory Synapses in Mice Deficient for the Active Zone Protein Bassoon , 2003, Neuron.

[7]  Shigetada Nakanishi,et al.  Developmentally regulated postsynaptic localization of a metabotropic glutamate receptor in rat rod bipolar cells , 1994, Cell.

[8]  S. Reuss,et al.  Synaptic ribbons, spheres and intermediate structures in the developing rat retina , 1992, International Journal of Developmental Neuroscience.

[9]  C. Garner,et al.  The presynaptic cytomatrix of brain synapses , 2001, Cellular and Molecular Life Sciences CMLS.

[10]  C. Garner,et al.  Bassoon, a Novel Zinc-finger CAG/Glutamine-repeat Protein Selectively Localized at the Active Zone of Presynaptic Nerve Terminals , 1998, The Journal of cell biology.

[11]  G. Buchsbaum,et al.  Mammalian rod terminal: Architecture of a binary synapse , 1995, Neuron.

[12]  E. Petrasch‐Parwez,et al.  Aczonin, a 550-Kd Putative Scaffolding Protein of Presynaptic Active Zones, Shares Homology Regions with Rim and Bassoon and Binds Profilin , 1999, The Journal of cell biology.

[13]  C. Hartmann,et al.  Abnormalities of the photoreceptor-bipolar cell synapse in a substrain of C57BL/10 mice. , 2000, Investigative ophthalmology & visual science.

[14]  B. Schnapp,et al.  The Kinesin Motor KIF3A Is a Component of the Presynaptic Ribbon in Vertebrate Photoreceptors , 1999, The Journal of Neuroscience.

[15]  D. Puro The Retina. An Approachable Part of the Brain , 1988 .

[16]  P. Gruss,et al.  Generating neuronal diversity in the retina: one for nearly all , 2002, Trends in Neurosciences.

[17]  H. Scheich,et al.  Presynaptic cytomatrix protein Bassoon is localized at both excitatory and inhibitory synapses of rat brain , 1999, The Journal of comparative neurology.

[18]  L. Peichl,et al.  Morphological types of horizontal cell in rodent retinae: A comparison of rat, mouse, gerbil, and guinea pig , 1994, Visual Neuroscience.

[19]  H. V. Gersdorff,et al.  Synaptic Ribbons:Versatile Signal Transducers , 2001, Neuron.

[20]  D. Bok,et al.  THE ROLE OF THE PIGMENT EPITHELIUM IN THE ETIOLOGY OF INHERITED RETINAL DYSTROPHY IN THE RAT , 1971, The Journal of cell biology.

[21]  Tiansen Li,et al.  Retinal degeneration in the rd mouse is caused by a defect in the β subunit of rod cGMP-phosphodiesterase , 1990, Nature.

[22]  H. von Gersdorff,et al.  Structure suggests function: the case for synaptic ribbons as exocytotic nanomachines , 2001, BioEssays : news and reviews in molecular, cellular and developmental biology.

[23]  C. Garner,et al.  Molecular determinants of presynaptic active zones , 2000, Current Opinion in Neurobiology.

[24]  D. G. Green,et al.  Are albino rats night blind? , 1991, Investigative ophthalmology & visual science.

[25]  J. Dowling,et al.  Synapse Formation Is Arrested in Retinal Photoreceptors of the Zebrafish nrc Mutant , 2001, The Journal of Neuroscience.

[26]  P. Sieving,et al.  Chapter 6 Negative components of the electroretinogram from proximal retina and photoreceptor , 1991 .

[27]  P. De Camilli,et al.  Piccolo, a novel 420 kDa protein associated with the presynaptic cytomatrix. , 1996, European journal of cell biology.

[28]  Noam E Ziv,et al.  Assembly of New Individual Excitatory Synapses Time Course and Temporal Order of Synaptic Molecule Recruitment , 2000, Neuron.

[29]  C. Garner,et al.  Localization of the presynaptic cytomatrix protein Piccolo at ribbon and conventional synapses in the rat retina: Comparison with Bassoon , 2001, The Journal of comparative neurology.

[30]  H. Wässle,et al.  Differential expression of the presynaptic cytomatrix protein bassoon among ribbon synapses in the mammalian retina , 1999, The European journal of neuroscience.

[31]  E. A. Schwartz,et al.  Asynchronous transmitter release: control of exocytosis and endocytosis at the salamander rod synapse. , 1996, The Journal of physiology.

[32]  J. Brandstätter,et al.  Localization of glutamate receptors at a complex synapse , 2000, Cell and Tissue Research.

[33]  H. Wässle,et al.  Immunocytochemical analysis of the mouse retina , 2000, The Journal of comparative neurology.

[34]  J. Blanks,et al.  Synaptogenesis in the photoreceptor terminal of the mouse retina , 1974, The Journal of comparative neurology.

[35]  Eckart D. Gundelfinger,et al.  Assembling the Presynaptic Active Zone A Characterization of an Active Zone Precursor Vesicle , 2001, Neuron.

[36]  C. Garner,et al.  Piccolo, a Presynaptic Zinc Finger Protein Structurally Related to Bassoon , 2000, Neuron.

[37]  You-Wei Peng,et al.  Ectopic synaptogenesis in the mammalian retina caused by rod photoreceptor-specific mutations , 2000, Nature Neuroscience.

[38]  Richard L. Sidman,et al.  INHERITED RETINAL DYSTROPHY IN THE RAT , 1962, The Journal of cell biology.

[39]  Giovanni Casini,et al.  Developmental expression of neurokinin‐1 and neurokinin‐3 receptors in the rat retina , 2000, The Journal of comparative neurology.

[40]  E. Strettoi,et al.  Modifications of retinal neurons in a mouse model of retinitis pigmentosa. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[41]  Denis A. Baylor,et al.  Synaptic circuitry of the retina and olfactory bulb , 1993, Cell.

[42]  R. Libby,et al.  Disruption of Laminin β2 Chain Production Causes Alterations in Morphology and Function in the CNS , 1999, The Journal of Neuroscience.

[43]  B. Boycott,et al.  Parallel processing in the mammalian retina: the Proctor Lecture. , 1999, Investigative ophthalmology & visual science.

[44]  Tomomitsu Miyoshi,et al.  Specific deficit of the ON response in visual transmission by targeted disruption of the mGIuR6 gene , 1995, Cell.