Short-Term Memory for Space and Time Flexibly Recruit Complementary Sensory-Biased Frontal Lobe Attention Networks

[1]  Adam G. Thomas,et al.  The Organization of Dorsal Frontal Cortex in Humans and Macaques , 2013, The Journal of Neuroscience.

[2]  Christopher L Asplund,et al.  Amodal Processing in Human Prefrontal Cortex , 2013, The Journal of Neuroscience.

[3]  David J. Sharp,et al.  Separable networks for top-down attention to auditory non-spatial and visuospatial modalities , 2013, NeuroImage.

[4]  Joe C. Adams Neuroanatomical Considerations of Speech Processing , 2012 .

[5]  Steven Greenberg,et al.  Listening to Speech : An Auditory Perspective , 2012 .

[6]  Adam C. Riggall,et al.  Prioritized Maps of Space in Human Frontoparietal Cortex , 2012, The Journal of Neuroscience.

[7]  Christopher L. Asplund,et al.  A Unified attentional bottleneck in the human brain , 2011, Proceedings of the National Academy of Sciences.

[8]  Edward W. Large,et al.  Neural Responses to Complex Auditory Rhythms: The Role of Attending , 2010, Front. Psychology.

[9]  P. Morosan,et al.  Broca's Region: Novel Organizational Principles and Multiple Receptor Mapping , 2010, PLoS biology.

[10]  J. Devin McAuley,et al.  Modality effects in rhythm processing: Auditory encoding of visual rhythms is neither obligatory nor automatic , 2010, Attention, perception & psychophysics.

[11]  M. D’Esposito,et al.  Frontal Cortex and the Discovery of Abstract Action Rules , 2010, Neuron.

[12]  J. Duncan The multiple-demand (MD) system of the primate brain: mental programs for intelligent behaviour , 2010, Trends in Cognitive Sciences.

[13]  Lee M. Miller,et al.  Auditory attentional control and selection during cocktail party listening. , 2010, Cerebral cortex.

[14]  René Marois,et al.  Mapping the pathways of information processing from sensation to action in four distinct sensorimotor tasks , 2009, Human brain mapping.

[15]  S. Kastner,et al.  Topographic maps in human frontal and parietal cortex , 2009, Trends in Cognitive Sciences.

[16]  Clayton E. Curtis,et al.  Persistent neural activity in the human frontal cortex when maintaining space that is “off the map” , 2009, Nature Neuroscience.

[17]  K. Müller,et al.  Functional architecture of verbal and tonal working memory: An FMRI study , 2009, Human brain mapping.

[18]  Örjan Blom,et al.  The dorsal auditory pathway is involved in performance of both visual and auditory rhythms , 2009, NeuroImage.

[19]  B. Wandell,et al.  Visual Field Maps in Human Cortex , 2007, Neuron.

[20]  Lizabeth M Romanski,et al.  Representation and integration of auditory and visual stimuli in the primate ventral lateral prefrontal cortex. , 2007, Cerebral cortex.

[21]  Juha Salmi,et al.  Orienting and maintenance of spatial attention in audition and vision: multimodal and modality-specific brain activations , 2007, Brain Structure and Function.

[22]  Lotfi B Merabet,et al.  Visual Topography of Human Intraparietal Sulcus , 2007, The Journal of Neuroscience.

[23]  Sabine Kastner,et al.  Topographic maps in human frontal cortex revealed in memory-guided saccade and spatial working-memory tasks. , 2007, Journal of neurophysiology.

[24]  Robert J. Zatorre,et al.  Neural substrates for dividing and focusing attention between simultaneous auditory and visual events , 2006, NeuroImage.

[25]  Martin I. Sereno,et al.  Spatial maps in frontal and prefrontal cortex , 2006, NeuroImage.

[26]  Maurizio Corbetta,et al.  The human brain is intrinsically organized into dynamic, anticorrelated functional networks. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[27]  M. Brass,et al.  The role of the inferior frontal junction area in cognitive control , 2005, Trends in Cognitive Sciences.

[28]  Fred L. Steinberg,et al.  Functional MRI reveals the existence of modality and coordination-dependent timing networks , 2005, NeuroImage.

[29]  Susan M. Courtney,et al.  Functional topography of working memory for face or voice identity , 2005, NeuroImage.

[30]  D. Burr,et al.  The Ventriloquist Effect Results from Near-Optimal Bimodal Integration , 2004, Current Biology.

[31]  V Menon,et al.  Modality effects in verbal working memory: differential prefrontal and parietal responses to auditory and visual stimuli , 2004, NeuroImage.

[32]  E. Koechlin,et al.  The Architecture of Cognitive Control in the Human Prefrontal Cortex , 2003, Science.

[33]  Lutz Jäncke,et al.  Functional anatomy of pitch memory—an fMRI study with sparse temporal sampling , 2003, NeuroImage.

[34]  G. Recanzone Auditory influences on visual temporal rate perception. , 2003, Journal of neurophysiology.

[35]  M. Corbetta,et al.  Control of goal-directed and stimulus-driven attention in the brain , 2002, Nature Reviews Neuroscience.

[36]  S. Shimojo,et al.  Illusions: What you see is what you hear , 2000, Nature.

[37]  J. Duncan,et al.  Common regions of the human frontal lobe recruited by diverse cognitive demands , 2000, Trends in Neurosciences.

[38]  E. DeYoe,et al.  A comparison of visual and auditory motion processing in human cerebral cortex. , 2000, Cerebral cortex.

[39]  T. Gawne The simultaneous coding of orientation and contrast in the responses of V1 complex cells , 2000, Experimental Brain Research.

[40]  G. Logan,et al.  Modality differences in short-term memory for rhythms , 2000, Memory & cognition.

[41]  B. Postle,et al.  An fMRI Investigation of Cortical Contributions to Spatial and Nonspatial Visual Working Memory , 2000, NeuroImage.

[42]  D. Pandya,et al.  Dorsolateral prefrontal cortex: comparative cytoarchitectonic analysis in the human and the macaque brain and corticocortical connection patterns , 1999, The European journal of neuroscience.

[43]  M. Corbetta,et al.  A Common Network of Functional Areas for Attention and Eye Movements , 1998, Neuron.

[44]  J. Rinzel,et al.  The role of dendrites in auditory coincidence detection , 1998, Nature.

[45]  Leslie G. Ungerleider,et al.  An area specialized for spatial working memory in human frontal cortex. , 1998, Science.

[46]  S C Rao,et al.  Integration of what and where in the primate prefrontal cortex. , 1997, Science.

[47]  P. Goldman-Rakic Regional and cellular fractionation of working memory. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[48]  T. Paus Location and function of the human frontal eye-field: A selective review , 1996, Neuropsychologia.

[49]  Edward E. Smith,et al.  Dissociation of Storage and Rehearsal in Verbal Working Memory: Evidence From Positron Emission Tomography , 1996 .

[50]  L H Carney,et al.  Enhancement of neural synchronization in the anteroventral cochlear nucleus. I. Responses to tones at the characteristic frequency. , 1994, Journal of neurophysiology.

[51]  小野 道夫,et al.  Atlas of the Cerebral Sulci , 1990 .

[52]  Arthur M. Glenberg,et al.  Modality effects in the coding reproduction of rhythms , 1989 .

[53]  W. Balch,et al.  The interaction of modality condition and presentation rate in short-term contour recognition , 1986, Perception & psychophysics.

[54]  Robert B. Welch,et al.  Contributions of audition and vision to temporal rate perception , 1986, Perception & psychophysics.

[55]  H. Barbas,et al.  Organization of afferent input to subdivisions of area 8 in the rhesus monkey , 1981, The Journal of comparative neurology.

[56]  D. H. Warren,et al.  Immediate perceptual response to intersensory discrepancy. , 1980, Psychological bulletin.

[57]  D. H. Warren,et al.  Sensory conflict in judgments of spatial direction , 1969 .

[58]  P. Goldman-Rakic,et al.  An auditory domain in primate prefrontal cortex , 2002, Nature Neuroscience.

[59]  N. O’connor,et al.  Seeing and hearing and space and space and time , 1972 .