Analysis of the archaeal sub-seafloor community at Suiyo Seamount on the Izu-Bonin Arc.

A sub-surface archaeal community at the Suiyo Seamount in the Western Pacific Ocean was investigated by 16S rRNA gene sequence and whole-cell in situ hybridization analyses. In this study, we drilled and cased holes at the hydrothermal area of the seamount to minimize contamination of the hydrothermal fluid in the sub-seafloor by penetrating seawater. PCR clone analysis of the hydrothermal fluid samples collected from a cased hole indicated the presence of chemolithoautotrophic primary biomass producers of Archaeoglobales and the Methanococcales-related archaeal HTE1 group, both of which can utilize hydrogen as an electron donor. We discuss the implication of the microbial community on the early history of life and on the search for extraterrestrial life.

[1]  Yusuke Morimoto,et al.  Analysis of Dissimilatory Sulfite Reductase and 16S rRNA Gene Fragments from Deep-Sea Hydrothermal Sites of the Suiyo Seamount, Izu-Bonin Arc, Western Pacific , 2004, Applied and Environmental Microbiology.

[2]  Todd O. Stevens,et al.  Lithoautotrophic Microbial Ecosystems in Deep Basalt Aquifers , 1995, Science.

[3]  C. Woese,et al.  Methanococcus jannaschii sp. nov., an extremely thermophilic methanogen from a submarine hydrothermal vent , 1983, Archives of Microbiology.

[4]  Tadashi Maruyama,et al.  Aeropyrum pernix gen. nov., sp. nov., a Novel Aerobic Hyperthermophilic Archaeon Growing at Temperatures up to 100°C , 1996 .

[5]  K. Horikoshi,et al.  Genetic diversity of archaea in deep-sea hydrothermal vent environments. , 1999, Genetics.

[6]  K. Horikoshi,et al.  Palaeococcus ferrophilus gen. nov., sp. nov., a barophilic, hyperthermophilic archaeon from a deep-sea hydrothermal vent chimney. , 2000, International journal of systematic and evolutionary microbiology.

[7]  D. Hafenbradl,et al.  Pyrolobus fumarii, gen. and sp. nov., represents a novel group of archaea, extending the upper temperature limit for life to 113°C , 1997, Extremophiles.

[8]  J. Baross,et al.  Temporal Changes in Archaeal Diversity and Chemistry in a Mid-Ocean Ridge Subseafloor Habitat , 2002, Applied and Environmental Microbiology.

[9]  Ross A. Overbeek,et al.  The RDP (Ribosomal Database Project) , 1997, Nucleic Acids Res..

[10]  D. Hafenbradl,et al.  Ferroglobus placidus gen. nov., sp. nov., a novel hyperthermophilic archaeum that oxidizes Fe2+ at neutral pH under anoxic conditions , 1996, Archives of Microbiology.

[11]  T. Oshima,et al.  Phylogenetic Diversity of Symbiotic Methanogens Living in the Hindgut of the Lower Termite Reticulitermes speratus Analyzed by PCR and In Situ Hybridization , 1999, Applied and Environmental Microbiology.

[12]  K. Horikoshi,et al.  Distribution of Archaea in a Black Smoker Chimney Structure , 2001, Applied and Environmental Microbiology.

[13]  E. Delong Archaea in coastal marine environments. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[14]  Holger W. Jannasch,et al.  Staphylothermus marinus sp. nov. Represents a Novel Genus of Extremely Thermophilic Submarine Heterotrophic Archaebacteria Growing up to 98 °C , 1986 .

[15]  P. Stoffers,et al.  Stetteria hydrogenophila, gen. nov. and sp. nov., a novel mixotrophic sulfur-dependent crenarchaeote isolated from Milos, Greece , 1997, Extremophiles.

[16]  T. Oshima,et al.  Methanogenic Symbionts and the Locality of their Host Lower Termites , 2001 .

[17]  John A. Baross,et al.  Submarine hydrothermal vents and associated gradient environments as sites for the origin and evolution of life , 1985, Origins of life and evolution of the biosphere.

[18]  E. Delong,et al.  Archaeal dominance in the mesopelagic zone of the Pacific Ocean , 2001, Nature.

[19]  T. Gold,et al.  The deep, hot biosphere. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[20]  K. Schleifer,et al.  Phylogenetic identification and in situ detection of individual microbial cells without cultivation. , 1995, Microbiological reviews.

[21]  David L. Williams,et al.  Submarine Thermal Springs on the Gal�pagos Rift , 1979, Science.

[22]  R. Huber,et al.  Sulfur-inhibited Thermosphaera aggregans sp. nov., a new genus of hyperthermophilic archaea isolated after its prediction from environmentally derived 16S rRNA sequences. , 1998, International journal of systematic bacteriology.

[23]  E. Shock,et al.  Geochemical constraints on chemolithoautotrophic metabolism by microorganisms in seafloor hydrothermal systems. , 1997, Geochimica et cosmochimica acta.

[24]  J. Kristjánsson,et al.  Phylogenetic Diversity Analysis of Subterranean Hot Springs in Iceland , 2001, Applied and Environmental Microbiology.

[25]  E. Delong,et al.  Vertical distribution and phylogenetic characterization of marine planktonic Archaea in the Santa Barbara Channel , 1997, Applied and environmental microbiology.

[26]  E. Delong,et al.  A Few Cosmopolitan Phylotypes Dominate Planktonic Archaeal Assemblages in Widely Different Oceanic Provinces , 2000, Applied and Environmental Microbiology.

[27]  K. Stetter,et al.  Ignicoccus gen. nov., a novel genus of hyperthermophilic, chemolithoautotrophic Archaea, represented by two new species, Ignicoccus islandicus sp nov and Ignicoccus pacificus sp nov. and Ignicoccus pacificus sp. nov. , 2000, International journal of systematic and evolutionary microbiology.

[28]  T. Oshima,et al.  Phylogenetic Analysis of Symbiotic Archaea Living in the Gut of Xylophagous Cockroaches , 2002 .

[29]  K. Stetter Archaeoglobus fulgidus gen. nov., sp. nov.: a new taxon of extremely thermophilic archaebacteria , 1988 .

[30]  D. Lovley,et al.  Geoglobus ahangari gen. nov., sp. nov., a novel hyperthermophilic archaeon capable of oxidizing organic acids and growing autotrophically on hydrogen with Fe(III) serving as the sole electron acceptor. , 2002, International journal of systematic and evolutionary microbiology.

[31]  A. Reysenbach,et al.  Novel Bacterial and Archaeal Lineages from an In Situ Growth Chamber Deployed at a Mid-Atlantic Ridge Hydrothermal Vent , 2000, Applied and Environmental Microbiology.

[32]  J. Deming,et al.  Deep-sea smokers: windows to a subsurface biosphere? , 1993, Geochimica et cosmochimica acta.

[33]  H. Harmsen,et al.  Distribution of microorganisms in deep-sea hydrothermal vent chimneys investigated by whole-cell hybridization and enrichment culture of thermophilic subpopulations , 1997, Applied and environmental microbiology.