BEST APPROXIMATION TO COMMON FIXED POINTS OF A SEMIGROUP OF NONEXPANSIVE OPERATORS

We study a sequential algorithm for finding the projection of a given point onto the common fixed points set of a semigroup of nonexpansive operators in Hilbert space. The convergence of such an algorithm was previously established only for finitely many nonexpansive operators. Algorithms of this kind have been applied to the best approximation and convex feasibility problems in various fields of applications.

[1]  P. Lions Approximation de Points Fixes de Contractions , 1977 .

[2]  S. Reich,et al.  Strong convergence of contraction semigroups and of iterative methods for accretive operators in Banach spaces , 1979 .

[3]  W. A. Kirk,et al.  Topics in Metric Fixed Point Theory , 1990 .

[4]  Jürgen Schu Approximation of fixed points of asymptotically nonexpansive mappings , 1991 .

[5]  P. L. Combettes Construction d'un point fixe commun à une famille de contractions fermes , 1995 .

[6]  S. Reich The asymptotic behavior of a class of nonlinear semigroups in the Hilbert ball , 1991 .

[7]  Haim Brezis,et al.  Monotonicity Methods in Hilbert Spaces and Some Applications to Nonlinear Partial Differential Equations , 1971 .

[8]  W. A. Kirk,et al.  Uniformly Lipschitzian Families of Transformations in Banach Spaces , 1974, Canadian Journal of Mathematics.

[9]  I. Yamada,et al.  Minimizing certain convex functions over the intersection of the fixed point sets of nonexpansive mappings , 1998 .

[10]  Hong-Kun Xu,et al.  Construction of sunny nonexpansive retractions in Banach spaces , 2002, Bulletin of the Australian Mathematical Society.

[11]  Simeon Reich,et al.  On the asymptotic behavior of nonlinear semigroups and the range of accretive operators II , 1981 .

[12]  Ronald E. Bruck Asymptotic convergence of nonlinear contraction semigroups in Hilbert space , 1975 .

[13]  S. Reich Asymptotic behavior of semigroups of nonlinear contractions in Banach spaces , 1976 .

[14]  Z. Opial Weak convergence of the sequence of successive approximations for nonexpansive mappings , 1967 .

[15]  L. Eisner Convergence of sequential and asynchronous nonlinear paracontractions , 2005 .

[16]  B. Halpern Fixed points of nonexpanding maps , 1967 .

[17]  T. Kuczumow Opial’s modulus and fixed points of semigroups of mappings , 1999 .

[18]  A. Pazy,et al.  On the asymptotic behavior of semigroups of nonlinear contractions in Hilbert space , 1978 .

[19]  Heinz H. Bauschke The Approximation of Fixed Points of Compositions of Nonexpansive Mappings in Hilbert Space , 1996 .

[20]  J. Górnicki Fixed points of asymptotically regular semigroups in Banach spaces , 1997 .

[21]  Heinz H. Bauschke,et al.  On Projection Algorithms for Solving Convex Feasibility Problems , 1996, SIAM Rev..

[22]  R. Wittmann Approximation of fixed points of nonexpansive mappings , 1992 .

[23]  S. Reich,et al.  Uniform Convexity, Hyperbolic Geometry, and Nonexpansive Mappings , 1984 .

[24]  F. Browder,et al.  The solution by iteration of nonlinear functional equations in Banach spaces , 1966 .

[25]  S. Reich Fixed point iterations of nonexpansive mappings , 1975 .

[26]  Amnon Pazy,et al.  Semi-groups of nonlinear contractions and dissipative sets☆ , 1969 .

[27]  H. Brezis Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert , 1973 .

[28]  S. Reich,et al.  Uniform asymptotic normal structure, the uniform semi-Opial property and fixed points of asymptotically regular uniformly lipschitzian semigroups. Part I , 1998 .

[29]  N. Lloyd TOPICS IN METRIC FIXED POINT THEORY (Cambridge Studies in Advanced Mathematics 28) , 1992 .