Morphology and Physiology of Excitatory Neurons in Layer 6b of the Somatosensory Rat Barrel Cortex

Neocortical lamina 6B (L6B) is a largely unexplored layer with a very heterogeneous cellular composition. To date, only little is known about L6B neurons on a systematic and quantitative basis. We investigated the morphological and electrophysiological properties of excitatory L6B neurons in the rat somatosensory barrel cortex using whole-cell patch-clamp recordings and simultaneous biocytin fillings. Subsequent histological processing and computer-assisted 3D reconstructions provided the basis for a classification of excitatory L6B neurons according to their structural and functional characteristics. Three distinct clusters of excitatory L6B neurons were identified: (C1) pyramidal neurons with an apical dendrite pointing towards the pial surface, (C2) neurons with a prominent, “apical”-like dendrite not oriented towards the pia, and (C3) multipolar spiny neurons without any preferential dendritic orientation. The second group could be further subdivided into three categories termed inverted, “tangentially” oriented and “horizontally” oriented neurons. Furthermore, based on the axonal domain two subcategories of L6B pyramidal cells were identified that had either a more barrel-column confined or an extended axonal field. The classification of excitatory L6B neurons provided here may serve as a basis for future studies on the structure, function, and synaptic connectivity of L6B neurons.

[1]  Jean Rossier,et al.  Diversity of GABAergic interneurons in layer VIa and VIb of mouse barrel cortex. , 2013, Cerebral cortex.

[2]  E. Welker,et al.  Intracortical connectivity of layer VI pyramidal neurons in the somatosensory cortex of normal and barrelless mice , 2012, The European journal of neuroscience.

[3]  Manuel Marx,et al.  Improved biocytin labeling and neuronal 3D reconstruction , 2012, Nature Protocols.

[4]  H. S. Meyer,et al.  Cell Type–Specific Three-Dimensional Structure of Thalamocortical Circuits in a Column of Rat Vibrissal Cortex , 2011, Cerebral cortex.

[5]  Michael M. Halassa,et al.  Neuronal Network Analysis , 2012, Neuromethods.

[6]  D. Feldmeyer,et al.  Morpho-Functional Mapping of Cortical Networks in Brain Slice Preparations Using Paired Electrophysiological Recordings , 2011 .

[7]  Heiko J Luhmann,et al.  The subplate and early cortical circuits. , 2010, Annual review of neuroscience.

[8]  H. S. Meyer,et al.  Number and Laminar Distribution of Neurons in a Thalamocortical Projection Column of Rat Vibrissal Cortex , 2010, Cerebral cortex.

[9]  B. Sakmann,et al.  Dimensions of a Projection Column and Architecture of VPM and POm Axons in Rat Vibrissal Cortex , 2010, Cerebral cortex.

[10]  Alex M. Thomson,et al.  Neocortical Layer 6, A Review , 2010, Front. Neuroanat..

[11]  Farran Briggs,et al.  Organizing Principles of Cortical Layer 6 , 2009, Front. Neural Circuits.

[12]  M. Helmstaedter,et al.  Axons Predict Neuronal Connectivity Within and Between Cortical Columns and Serve as Primary Classifiers of Interneurons in a Cortical Column , 2010 .

[13]  D. Feldmeyer,et al.  New Aspects of Axonal Structure and Function , 2010 .

[14]  H. Luhmann,et al.  Subplate Cells: Amplifiers of Neuronal Activity in the Developing Cerebral Cortex , 2009, Front. Neuroanat..

[15]  Juan Torres-Reveron,et al.  The Changing Roles of Neurons in the Cortical Subplate , 2009, Front. Neuroanat..

[16]  Moritz Helmstaedter,et al.  The relation between dendritic geometry, electrical excitability, and axonal projections of L2/3 interneurons in rat barrel cortex. , 2009, Cerebral cortex.

[17]  Moritz Helmstaedter,et al.  L2/3 interneuron groups defined by multiparameter analysis of axonal projection, dendritic geometry, and electrical excitability. , 2009, Cerebral cortex.

[18]  B. Sakmann,et al.  Neuronal correlates of local, lateral, and translaminar inhibition with reference to cortical columns. , 2009, Cerebral cortex.

[19]  J. Brumberg,et al.  Morphological heterogeneity of layer VI neurons in mouse barrel cortex , 2009, The Journal of comparative neurology.

[20]  L. Roux,et al.  Glutamatergic nonpyramidal neurons from neocortical layer VI and their comparison with pyramidal and spiny stellate neurons. , 2009, Journal of neurophysiology.

[21]  O. Ohana,et al.  Inter- and intralaminar subcircuits of excitatory and inhibitory neurons in layer 6a of the rat barrel cortex. , 2008, Journal of neurophysiology.

[22]  E. P. Gardner,et al.  Petilla terminology: nomenclature of features of GABAergic interneurons of the cerebral cortex , 2008, Nature Reviews Neuroscience.

[23]  Juan Torres-Reveron,et al.  Properties of Persistent Postnatal Cortical Subplate Neurons , 2007, The Journal of Neuroscience.

[24]  J. Lübke,et al.  Efficacy and connectivity of intracolumnar pairs of layer 2/3 pyramidal cells in the barrel cortex of juvenile rats , 2006, The Journal of physiology.

[25]  M. Mühlethaler,et al.  Exclusive Postsynaptic Action of Hypocretin-Orexin on Sublayer 6b Cortical Neurons , 2004, The Journal of Neuroscience.

[26]  R. Reep,et al.  Layer VII and the gray matter trajectories of corticocortical axons in rats , 1996, Anatomy and Embryology.

[27]  B. Sakmann,et al.  Patch-clamp recordings from the soma and dendrites of neurons in brain slices using infrared video microscopy , 1993, Pflügers Archiv.

[28]  M. Marín‐padilla Dual origin of the mammalian neocortex and evolution of the cortical plate , 1978, Anatomy and Embryology.

[29]  F. Hajdu,et al.  Identification of the golgi picture of the layer VI cortico-geniculate projection neurons , 1975, Experimental Brain Research.

[30]  G. Roch,et al.  The onset of synaptogenesis in rat temporal cortex , 1975, Anatomy and Embryology.

[31]  I. Divac,et al.  Vertical ascending connections in the isocortex , 2004, Anatomy and Embryology.

[32]  T. Kaneko,et al.  Organization and development of corticocortical associative neurons expressing the orphan nuclear receptor Nurr1 , 2003, The Journal of comparative neurology.

[33]  J. Lübke,et al.  Morphometric analysis of the columnar innervation domain of neurons connecting layer 4 and layer 2/3 of juvenile rat barrel cortex. , 2003, Cerebral cortex.

[34]  K. Kandler,et al.  Somatotopic organization of rat thalamocortical slices , 2002, Journal of Neuroscience Methods.

[35]  H. Luhmann,et al.  Functional Synaptic Projections onto Subplate Neurons in Neonatal Rat Somatosensory Cortex , 2002, The Journal of Neuroscience.

[36]  L. Cauller,et al.  Corticocortical and thalamocortical projections to layer I of the frontal neocortex in rats , 2001, Brain Research.

[37]  J. Rossier,et al.  Classification of fusiform neocortical interneurons based on unsupervised clustering. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[38]  J. Lübke,et al.  Reliable synaptic connections between pairs of excitatory layer 4 neurones within a single ‘barrel’ of developing rat somatosensory cortex , 1999, The Journal of physiology.

[39]  L. Cauller,et al.  Widespread projections from subgriseal neurons (layer VII) to layer I in adult rat cortex , 1999, The Journal of comparative neurology.

[40]  J. Winer,et al.  Layer VI in cat primary auditory cortex: Golgi study and sublaminar origins of projection neurons , 1999, The Journal of comparative neurology.

[41]  B Sakmann,et al.  Transmitter release modulation in nerve terminals of rat neocortical pyramidal cells by intracellular calcium buffers , 1998, The Journal of physiology.

[42]  Y. Kubota,et al.  GABAergic cell subtypes and their synaptic connections in rat frontal cortex. , 1997, Cerebral cortex.

[43]  M. Deschenes,et al.  Intracortical Axonal Projections of Lamina VI Cells of the Primary Somatosensory Cortex in the Rat: A Single-Cell Labeling Study , 1997, The Journal of Neuroscience.

[44]  J. Deuchars,et al.  Single axon IPSPs elicited in pyramidal cells by three classes of interneurones in slices of rat neocortex. , 1996, The Journal of physiology.

[45]  H. Markram,et al.  Frequency and Dendritic Distribution of Autapses Established by Layer 5 Pyramidal Neurons in the Developing Rat Neocortex: Comparison with Synaptic Innervation of Adjacent Neurons of the Same Class , 1996, The Journal of Neuroscience.

[46]  J. Bourassa,et al.  Corticothalamic projections from the primary visual cortex in rats: a single fiber study using biocytin as an anterograde tracer , 1995, Neuroscience.

[47]  M. Deschenes,et al.  Corticothalamic Projections from the Cortical Barrel Field to the Somatosensory Thalamus in Rats: A Single‐fibre Study Using Biocytin as an Anterograde Tracer , 1995, The European journal of neuroscience.

[48]  A Fairén,et al.  Cortical Cells That Migrate Beyond Area Boundaries: Characterization of an Early Neuronal Population in the Lower Intermediate Zone of Prenatal Rats , 1994, The European journal of neuroscience.

[49]  C. Shatz,et al.  The subplate, a transient neocortical structure: its role in the development of connections between thalamus and cortex. , 1994, Annual review of neuroscience.

[50]  Y. Kubota,et al.  Correlation of physiological subgroupings of nonpyramidal cells with parvalbumin- and calbindinD28k-immunoreactive neurons in layer V of rat frontal cortex. , 1993, Journal of neurophysiology.

[51]  A. Burkhalter,et al.  Organization of long-range inhibitory connections with rat visual cortex , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[52]  N. Berman,et al.  The development of neuropeptide Y immunoreactive neurons in cat visual cortical areas. , 1992, Brain research. Developmental brain research.

[53]  B. Connors,et al.  Thalamocortical responses of mouse somatosensory (barrel) cortexin vitro , 1991, Neuroscience.

[54]  B. Finlay,et al.  Dual fate of subplate neurons in a rodent. , 1991, Cerebral cortex.

[55]  A. Larkman,et al.  Dendritic morphology of pyramidal neurones of the visual cortex of the rat: III. Spine distributions , 1991, The Journal of comparative neurology.

[56]  H. Dodt,et al.  Visualizing unstained neurons in living brain slices by infrared DIC-videomicroscopy , 1990, Brain Research.

[57]  E M Glaser,et al.  Neuron imaging with Neurolucida--a PC-based system for image combining microscopy. , 1990, Computerized medical imaging and graphics : the official journal of the Computerized Medical Imaging Society.

[58]  Michael W. Miller,et al.  Numbers of neurons and glia in mature rat somatosensory cortex: Effects of prenatal exposure to ethanol , 1990, The Journal of comparative neurology.

[59]  B. Connors,et al.  Intrinsic firing patterns of diverse neocortical neurons , 1990, Trends in Neurosciences.

[60]  J. Altman,et al.  Development of layer I and the subplate in the rat neocortex , 1990, Experimental Neurology.

[61]  F. Valverde,et al.  Development and differentiation of early generated cells of sublayer VIb in the somatosensory cortex of the rat: A correlated Golgi and autoradiographic study , 1989, The Journal of comparative neurology.

[62]  C. Shatz,et al.  Interstitial cells of the adult neocortical white matter are the remnant of the early generated subplate neuron population , 1989, The Journal of comparative neurology.

[63]  J. Lübke,et al.  The postnatal development of layer VI pyramidal neurons in the cat's striate cortex, as visualized by intracellular Lucifer yellow injections in aldehyde-fixed tissue. , 1989, Brain research. Developmental brain research.

[64]  R. Reep,et al.  Layer VII of rodent cerebral cortex , 1988, Neuroscience Letters.

[65]  P. C. Murphy,et al.  Cerebral Cortex , 2017, Cerebral Cortex.

[66]  I. Fábregues,et al.  A Golgi study of the sixth layer of the cerebral cortex. II. The gyrencephalic brain of Carnivora, Artiodactyla and Primates. , 1986, Journal of anatomy.

[67]  I. Fábregues,et al.  A Golgi study of the sixth layer of the cerebral cortex. I. The lissencephalic brain of Rodentia, Lagomorpha, Insectivora and Chiroptera. , 1986, Journal of anatomy.

[68]  C. Shatz,et al.  Neurogenesis of the cat's primary visual cortex , 1985, The Journal of comparative neurology.

[69]  D. McCormick,et al.  Comparative electrophysiology of pyramidal and sparsely spiny stellate neurons of the neocortex. , 1985, Journal of neurophysiology.

[70]  Alan Peters,et al.  Cellular components of the cerebral cortex , 1984 .

[71]  Pasko Rakic,et al.  Cytology and time of origin of interstitial neurons in the white matter in infant and adult human and monkey telencephalon , 1980, Journal of neurocytology.

[72]  D. Kristt Development of neocortical circuitry: Histochemical localization of acetylcholinesterase in relation to the cell layers of rat somatosensory cortex , 1979, The Journal of comparative neurology.

[73]  A. Peters,et al.  The forms of non‐pyramidal neurons in the visual cortex of the rat , 1978, The Journal of comparative neurology.

[74]  N. König,et al.  The time of origin of Cajal-Retzius cells in the rat temporal cortex. An autoradiographic study , 1977, Neuroscience Letters.

[75]  C. Gilbert,et al.  The projections of cells in different layers of the cat's visual cortex , 1975, The Journal of comparative neurology.

[76]  J. Wenzel,et al.  [Neurohistological studies on the variability of the pyramidal cells of the sensory cortex of the rat]. , 1973, Journal fur Hirnforschung.

[77]  G. Garweg [Differential incorporation into cell layers of the cerebral cortex following labelling with D,L-proline-H3 in mice]. , 1970, Experientia.

[78]  J. H. Ward Hierarchical Grouping to Optimize an Objective Function , 1963 .

[79]  R. L. Thorndike Who belongs in the family? , 1953 .

[80]  G. Smith,et al.  Die Cytoarchitektonik der Hirnrinde des erwachsenen Menschen. , 1927 .

[81]  C. Economo,et al.  Die Cytoarchitektonik der Hirnrinde des erwachsenen Menschen , 1925 .