A wreath product group approach to signal and image processing .I. Multiresolution analysis

We propose the use of spectral analysis on certain noncommutative finite groups in digital signal processing and, in particular, image processing. We pay significant attention to groups constructed as wreath products of cyclic groups. Within this large class of groups, our approach recovers the discrete Fourier transform (DFT), the Haar wavelet transform, various multichannel pyramid filter banks, and other aspects of multiresolution analysis as special cases of a more general phenomenon. In addition, the group structure provides a rich algebraic structure that can be exploited for the analysis and manipulation of signals. Our approach relies on a synthesis of ideas found in the early work of Holmes (1987, 1990), Karpovsky and Trachtenberg (1985), and others on noncommutative filtering, as well as Diaconis's (1989) spectral analysis approach to understanding data.

[1]  Dennis M. Healy,et al.  Wreath products for image processing , 1996, 1996 IEEE International Conference on Acoustics, Speech, and Signal Processing Conference Proceedings.

[2]  D. Maslen Efficient computation of Fourier transforms on compact groups , 1998 .

[3]  R. Holmes,et al.  Signal Processing on Finite Groups , 1990 .

[4]  Persi Diaconis,et al.  Spectral Analysis for Discrete Longitudinal Data , 1994 .

[5]  Bruno Torrésani,et al.  Wavelets on Discrete Fields , 1994 .

[6]  Shin-ichi Matsushita Topological Groups , 1952 .

[7]  Hanan Samet,et al.  Region representation: quadtrees from boundary codes , 1980, CACM.

[8]  J. Müller,et al.  Group Theory , 2019, Computers, Rigidity, and Moduli.

[9]  C. M. Woodman The symmetry groups of non-rigid molecules as semi-direct products , 1970 .

[10]  J. Kovacevic,et al.  Designing local orthogonal bases on finite groups I: Abelian case , 2000 .

[11]  T.W. Cairns,et al.  Finite Abelian Groups , 2018, Algebra.

[12]  Richard B. Holmes,et al.  MATHEMATICAL FOUNDATIONS OF SIGNAL PROCESSING , 1979 .

[13]  U. Grenander,et al.  Ergodic Algorithms on Special Euclidean Groups for ATR , 1997 .

[14]  Stephen Del Marco,et al.  Improved transient signal detection using a wavepacket-based detector with an extended translation-invariant wavelet transform , 1997, IEEE Trans. Signal Process..

[15]  Ahmed H. Tewfik,et al.  A binary wavelet decomposition of binary images , 1996, IEEE Trans. Image Process..

[16]  Robert J. Valenza,et al.  A representation-theoretic approach to the DFT with noncommutative generalizations , 1992, IEEE Trans. Signal Process..

[17]  Ethan D. Bolker,et al.  The finite Radon transform , 1987 .

[18]  P. P. Vaidyanathan,et al.  Paraunitary filter banks over finite fields , 1997, IEEE Trans. Signal Process..

[19]  R. Tolimieri,et al.  Is computing with the finite Fourier transform pure or applied mathematics , 1979 .

[20]  William K. Pratt,et al.  Digital image processing (2nd ed.) , 1991 .

[21]  K. Balasubramanian,et al.  Graph theoretical characterization of NMR groups, nonrigid nuclear spin species and the construction of symmetry adapted NMR spin functions , 1980 .

[22]  R. Scott,et al.  An Iterative Method for Network Synthesis , 1953, Transactions of the IRE Professional Group on Circuit Theory.

[23]  Jean-Pierre Serre,et al.  Linear representations of finite groups , 1977, Graduate texts in mathematics.

[24]  Rolf Johannesson,et al.  Algebraic methods for signal processing and communications coding , 1995 .

[25]  John D. Lafferty,et al.  Spectral techniques for expander codes , 1997, STOC '97.

[26]  Dennis M. Healy,et al.  A Wreath Product Group Approach to Signal and Image Processing: Part II --- Convolution, Correlation , 1998 .

[27]  Paul A. Wintz,et al.  Calculation of Fourier transforms on finite Abelian groups (Corresp.) , 1970, IEEE Trans. Inf. Theory.

[28]  A. Fässler,et al.  Group Theoretical Methods and Their Applications , 1992 .

[29]  Reiner Lenz Using representations of the dihedral groups in the design of early vision filters , 1993, 1993 IEEE International Conference on Acoustics, Speech, and Signal Processing.

[30]  Allan G. Silberger,et al.  Introduction to Harmonic Analysis on Reductive P-adic Groups. , 1979 .

[31]  Dennis M. Healy,et al.  An FFT for the 2-sphere and applications , 1996, 1996 IEEE International Conference on Acoustics, Speech, and Signal Processing Conference Proceedings.

[32]  V. Rokhlin,et al.  Fast algorithms for polynomial interpolation, integration, and differentiation , 1996 .

[33]  Gagan Mirchandani,et al.  Wreath products for edge detection , 1998, Proceedings of the 1998 IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP '98 (Cat. No.98CH36181).

[34]  Daniel N. Rockmore,et al.  Some applications of generalized FFT's , 1997, Groups and Computation.

[35]  Dennis M. Healy,et al.  Fast Discrete Polynomial Transforms with Applications to Data Analysis for Distance Transitive Graphs , 1997, SIAM J. Comput..

[36]  Aaas News,et al.  Book Reviews , 1893, Buffalo Medical and Surgical Journal.

[37]  Gregory S. Chirikjian,et al.  Numerical convolution on the Euclidean group with applications to workspace generation , 1998, IEEE Trans. Robotics Autom..

[38]  H. O. Foulkes Abstract Algebra , 1967, Nature.

[39]  Gregory S. Chirikjian,et al.  Inverse kinematics of discretely actuated hyper-redundant manipulators using workspace densities , 1996, Proceedings of IEEE International Conference on Robotics and Automation.

[40]  P. Diaconis A Generalization of Spectral Analysis with Application to Ranked Data , 1989 .

[41]  Hyman Bass,et al.  Cyclic Renormalization and Automorphism Groups of Rooted Trees , 1995 .

[42]  Riccardo Bernardini,et al.  Local orthogonal bases I: Construction , 1996, Multidimens. Syst. Signal Process..

[43]  David H. Eberly,et al.  Adaptation of group algebras to signal and image processing , 1991, CVGIP Graph. Model. Image Process..

[44]  J. Kovacevic,et al.  Designing local orthogonal bases on finite groups II: Nonabelian case , 2000 .

[45]  P. Diaconis Group representations in probability and statistics , 1988 .

[46]  Murad Özaydin,et al.  Platonic Orthonormal Wavelets , 1997 .

[47]  Anuj Srivastava,et al.  Lie group parametrization for dynamics based prior in ATR , 1994, Proceedings of IEEE 6th Digital Signal Processing Workshop.

[48]  Gregory S. Chirikjian,et al.  Pattern Matching as a Correlation on the Discrete Motion Group , 1999, Comput. Vis. Image Underst..

[49]  E. A. Trachtenberg FILTERING IN A COMMUNICATION CHANNEL BY FOURIER TRANSFORMS OVER FINITE GROUPS , 1985 .

[50]  D. Healy,et al.  Computing Fourier Transforms and Convolutions on the 2-Sphere , 1994 .

[51]  Ronald R. Coifman,et al.  Adapted waveform "de-noising" for medical signals and images , 1995 .

[52]  D. E. Littlewood,et al.  Group Representations and Applied Probability , 1967 .

[53]  S. Mallat Multiresolution approximations and wavelet orthonormal bases of L^2(R) , 1989 .

[54]  Riccardo Bernardini,et al.  Local orthogonal bases II: Window design , 1996, Multidimens. Syst. Signal Process..

[55]  D. Spielman,et al.  Expander codes , 1996 .

[56]  M. Unser ON THE APPROXIMATION OF THE DISCRETE KARHUNEN-LOEVE TRANSFORM FOR STATIONARY PROCESSES , 1984 .

[57]  E. W. Jacobs,et al.  Fractal Image Compression Using Iterated Transforms , 1992 .

[58]  L. G. Weiss Wavelets and wideband correlation processing , 1994, IEEE Signal Processing Magazine.

[59]  Edward H. Adelson,et al.  Shiftable multiscale transforms , 1992, IEEE Trans. Inf. Theory.

[60]  Alan S. Willsky,et al.  On the Algebraic Structure of Certain Partially Observable Finite-State Markov Processes , 1978, Inf. Control..

[61]  J. Tukey,et al.  An algorithm for the machine calculation of complex Fourier series , 1965 .

[62]  A. Grossmann,et al.  Transforms associated to square integrable group representations. I. General results , 1985 .

[63]  A. Figá-Talamanca,et al.  Harmonic analysis and representation theory for groups acting on homogeneous trees , 1991 .

[64]  Carolyn P. Johnston On the pseudodilation representations of flornes, grossmann, holschneider, and torresani , 1997 .

[65]  Ton Kalker,et al.  A group theoretic approach to multidimensional filter banks: theory and applications , 1996, IEEE Trans. Signal Process..

[66]  Cheryl E. Praeger,et al.  Generalized Wreath Products of Permutation Groups , 1983 .

[67]  Sean S. B. Moore,et al.  FFTs for the 2-Sphere-Improvements and Variations , 1996 .

[68]  N. Vilenkin Special Functions and the Theory of Group Representations , 1968 .

[69]  Dennis M. Healy,et al.  A wreath product group approach to signal and image processing .II. Convolution, correlation, and applications , 2000, IEEE Trans. Signal Process..