Kinetic model reduction using integer and semi-infinite programming
暂无分享,去创建一个
[1] Martin Berz,et al. Computational differentiation : techniques, applications, and tools , 1996 .
[2] Tamás Turányi,et al. Reaction rate analysis of complex kinetic systems , 1989 .
[3] Viriato Semiao,et al. A consistent-splitting approach to computing stiff steady-state reacting flows with adaptive chemistry , 2003 .
[4] William H. Green,et al. An adaptive chemistry approach to modeling complex kinetics in reacting flows , 2003 .
[5] Arthur W. Westerberg,et al. Bilevel programming for steady-state chemical process design—I. Fundamentals and algorithms , 1990 .
[6] Stephen B. Pope,et al. Treating chemistry in combustion with detailed mechanisms—In situ adaptive tabulation in principal directions—Premixed combustion , 1998 .
[7] Ignacio E. Grossmann,et al. Optimal process design under uncertainty , 1983 .
[8] G. Alistair Watson,et al. A projected lagrangian algorithm for semi-infinite programming , 1985, Math. Program..
[9] Jenn-Tai Hwang,et al. Sensitivity analysis in chemical kinetics by the method of polynomial approximations , 1983 .
[10] E. Balas,et al. Mixed 0-1 Programming by Lift-and-Project in a Branch-and-Cut Framework , 1996 .
[11] Karl Nickel,et al. Die zentrische Form in der Intervallarithmetik, ihre quadratische Konvergenz und ihre Inklusionsisotonie , 1982, Computing.
[12] R. Hoprst,et al. Deterministic global optimization with partition sets whose feasibility is not known: Application to concave minimization, reverse convex constraints, DC-programming, and Lipschitzian optimization , 1988 .
[13] Herschel Rabitz,et al. The Green’s function method of sensitivity analysis in chemical kinetics , 1978 .
[14] Michael Frenklach,et al. PRISM: piecewise reusable implementation of solution mapping. An economical strategy for chemical kinetics , 1998 .
[15] R. Horst,et al. Global Optimization: Deterministic Approaches , 1992 .
[16] Ulrich Maas,et al. Simplifying chemical kinetics: Intrinsic low-dimensional manifolds in composition space , 1992 .
[17] Eckart Baumann. Optimal centered forms , 1988 .
[18] Christodoulos A. Floudas,et al. Global Optimization of Nonlinear Bilevel Programming Problems , 2001, J. Glob. Optim..
[19] Nikolaos V. Sahinidis,et al. GAMS / BARON 5 . 0 ∗ Global Optimization of Mixed-Integer Nonlinear Programs , 2002 .
[20] P. I. Barton,et al. DAEPACK: An Open Modeling Environment for Legacy Models , 2000 .
[21] Garth P. McCormick,et al. Computability of global solutions to factorable nonconvex programs: Part I — Convex underestimating problems , 1976, Math. Program..
[22] Paul I. Barton,et al. Interval Methods for Semi-Infinite Programs , 2005, Comput. Optim. Appl..
[23] Ramon E. Moore. Methods and applications of interval analysis , 1979, SIAM studies in applied mathematics.
[24] G. Still,et al. On Optimality Conditions for Generalized Semi-Infinite Programming Problems , 2000 .
[25] William H. Green,et al. Rate-Based Construction of Kinetic Models for Complex Systems , 1997 .
[26] Yongli Li,et al. A semi-infinite programming model for earliness/tardiness production planning with simulated annealing , 1997 .
[27] G. Alefeld,et al. Interval analysis: theory and applications , 2000 .
[28] Paul I. Barton,et al. On upgrading the numerics in combustion chemistry codes , 2002 .
[29] Nancy J. Brown,et al. Mechanism reduction via principal component analysis , 1997 .
[30] David Kendrick,et al. GAMS, a user's guide , 1988, SGNM.
[31] W. E. Stewart,et al. Sensitivity analysis of initial value problems with mixed odes and algebraic equations , 1985 .
[32] S. H. Lam,et al. Understanding complex chemical kinetics with computational singular perturbation , 1989 .
[33] Masao Fukushima,et al. A globally convergent SQP method for semi-infinite nonlinear optimization , 1988 .
[34] Hanif D. Sherali,et al. Mixed-integer bilinear programming problems , 1993, Math. Program..
[35] Ioannis P. Androulakis,et al. Kinetic mechanism reduction based on an integer programming approach , 2000 .
[36] Tamás Turányi,et al. Parameterization of Reaction Mechanisms Using Orthonormal Polynomials , 1994, Comput. Chem..
[37] Robert I. Cukier,et al. Global nonlinear sensitivity analysis using walsh functions , 1981 .
[38] Vasilios Manousiouthakis,et al. KINETIC MODEL REDUCTION USING GENETIC ALGORITHMS , 1998 .
[39] Kenneth O. Kortanek,et al. Semi-Infinite Programming: Theory, Methods, and Applications , 1993, SIAM Rev..
[40] K.,et al. Nonlinear sensitivity analysis of multiparameter model systems , 1977 .
[41] Hanif D. Sherali,et al. Linearization Strategies for a Class of Zero-One Mixed Integer Programming Problems , 1990, Oper. Res..
[42] P. I. Barton,et al. Efficient sensitivity analysis of large-scale differential-algebraic systems , 1997 .
[43] L. Petzold,et al. Model reduction for chemical kinetics: an optimization approach , 1999 .
[44] Rembert Reemtsen,et al. Numerical Methods for Semi-Infinite Programming: A Survey , 1998 .
[45] Peter P. Valko,et al. Principal component analysis of kinetic models , 1985 .
[46] Andreas Griewank,et al. Evaluating derivatives - principles and techniques of algorithmic differentiation, Second Edition , 2000, Frontiers in applied mathematics.
[47] G. A. Watson,et al. Numerical Experiments with Globally Convergent Methods for Semi-Infinite Programming Problems , 1983 .
[48] C. Westbrook,et al. A Comprehensive Modeling Study of n-Heptane Oxidation , 1998 .
[49] R. J. Kee,et al. Chemkin-II : A Fortran Chemical Kinetics Package for the Analysis of Gas Phase Chemical Kinetics , 1991 .
[50] L. Petzold,et al. Numerical methods and software for sensitivity analysis of differential-algebraic systems , 1986 .
[51] Michal Kočvara,et al. Nonsmooth approach to optimization problems with equilibrium constraints : theory, applications, and numerical results , 1998 .
[52] K. Shuler,et al. Nonlinear sensitivity analysis of multiparameter model systems , 1977 .
[53] G. D. Byrne,et al. VODE: a variable-coefficient ODE solver , 1989 .
[54] R. Horst. Deterministic global optimization with partition sets whose feasibility is not known: Application to concave minimization, reverse convex constraints, DC-programming, and Lipschitzian optimization , 1988 .
[55] Oliver Stein,et al. On generalized semi-infinite optimization and bilevel optimization , 2002, Eur. J. Oper. Res..
[56] E. Polak. On the mathematical foundations of nondifferentiable optimization in engineering design , 1987 .
[57] Elke Haaren-Retagne. A semi-infinite programming algorithm for robot trajectory planning , 1992 .
[58] Nikolaos V. Sahinidis,et al. BARON: A general purpose global optimization software package , 1996, J. Glob. Optim..
[59] Vasilios Manousiouthakis,et al. Reaction mechanism simplification using mixed-integer nonlinear programming ☆ , 2000 .
[60] Egon Balas,et al. Gomory cuts revisited , 1996, Oper. Res. Lett..
[61] C. J. Price,et al. Numerical experiments in semi-infinite programming , 1996, Comput. Optim. Appl..
[62] Bernhard A. Schmitt,et al. Die Berechnung von Schranken für den Wertebereich eines Polynoms in einem Intervall , 2005, Computing.
[63] Jon G. Rokne,et al. Computer Methods for the Range of Functions , 1984 .
[64] A. Tits,et al. Feasible Sequential Quadratic Programming for Finely Discretized Problems from SIP , 1998 .
[65] Michael Frenklach,et al. Detailed reduction of reaction mechanisms for flame modeling , 1991 .
[66] J. E. Falk,et al. An Algorithm for Separable Nonconvex Programming Problems , 1969 .
[67] Georg Still,et al. Generalized semi-infinite programming: Theory and methods , 1999, Eur. J. Oper. Res..
[68] K. Grasse,et al. A general class of branch-and-bound methods in global optimization with some new approaches for concave minimization , 1986 .