The images of a rotating naked singularity with a complete photon sphere

For a black hole, the appearance of a shadow is due to the light rays entering the event horizon, and the unstable photon sphere determines the boundary of shadow. Our research indicates that even in the presence of a complete photon sphere without an event horizon, a shadow will not be formed. We present the images of Konoplya-Zhidenko compact object with or without complete photon sphere, and investigate the influence of unstable photon circular orbits (UPCOs) and stable photon circular orbits (SPCOs) on the images of Konoplya-Zhidenko compact object. When the event horizon is absent, the unstable prograde and retrograde light rings can also exist, so dose the complete photon sphere. But the dark shadow doesn’t emerge, and the image of the complete photon sphere appears as an infinite number of relativistic Einstein rings. For this case, the light rays pass through the photon sphere, but eventually escape to infinity. For some parameter values, only the unstable retrograde light ring can exist, which leads to an incomplete photon sphere. In this case, the dark shadow also doesn’t emerge, and the image of the incomplete photon sphere appears as an infinite number of relativistic Einstein arcs. Furthermore, in Konoplya-Zhidenko naked singularity spacetime, the stable LRs and SPCOs can also exist, but they have no effect on the naked singularity image. This study may contribute to future astronomical observations, and aid in verifying the cosmic censorship conjecture and various gravitational theories.

[1]  Jiliang Jing,et al.  Self-consistent effective-one-body theory for spinning binaries based on post-Minkowskian approximation , 2023, Science China Physics, Mechanics & Astronomy.

[2]  Jiliang Jing,et al.  Polarized image of a rotating black hole surrounded by a cold dark matter halo , 2023, The European Physical Journal C.

[3]  Jiliang Jing,et al.  Black hole images: A review , 2022, Science China Physics, Mechanics & Astronomy.

[4]  Jiliang Jing,et al.  New self-consistent effective one-body theory for spinless binaries based on the post-Minkowskian approximation , 2022, Science China Physics, Mechanics & Astronomy.

[5]  Jiliang Jing,et al.  Polarized Image of a Rotating Black Hole in Scalar–Tensor–Vector–Gravity Theory , 2022, The Astrophysical Journal.

[6]  P. Joshi,et al.  Light trajectory and shadow shape in the rotating naked singularity , 2022, The European Physical Journal C.

[7]  Jiliang Jing,et al.  Image of Bonnor black dihole with a thin accretion disk and its polarization information , 2022, The European Physical Journal C.

[8]  Jiliang Jing,et al.  Chaotic shadows of black holes: a short review , 2022, Communications in Theoretical Physics.

[9]  Jiliang Jing,et al.  Polarization distribution in the image of a synchrotron emitting ring around a regular black hole , 2022, Science China Physics, Mechanics & Astronomy.

[10]  Daniel C. M. Palumbo,et al.  First Sagittarius A* Event Horizon Telescope Results. IV. Variability, Morphology, and Black Hole Mass , 2022, The Astrophysical Journal Letters.

[11]  Jiliang Jing,et al.  Self-consistent effective-one-body theory for spinless binaries based on post-Minkowskian approximation I: Hamiltonian and decoupled equation for ψ4B\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{math , 2022, Science China Physics, Mechanics & Astronomy.

[12]  Anzhong Wang,et al.  Gauge invariant perturbations of general spherically symmetric spacetimes , 2022, Science China Physics, Mechanics & Astronomy.

[13]  Jiliang Jing,et al.  Self-consistent effective-one-body theory for spinless binaries based on post-Minkowskian approximation I: Hamiltonian and decoupled equation for $$\psi _4^{\rm{B}}$$ , 2021, Science China Physics, Mechanics & Astronomy.

[14]  Jiliang Jing,et al.  The surface geometry and shadow of a Schwarzschild black hole with halo , 2021, Chinese Physics C.

[15]  Jiliang Jing,et al.  Polarized image of an equatorial emitting ring around a 4D Gauss–Bonnet black hole , 2021, The European Physical Journal C.

[16]  D. Psaltis,et al.  Black Hole Images as Tests of General Relativity: Effects of Spacetime Geometry , 2021, The Astrophysical Journal.

[17]  Jiliang Jing,et al.  Effect of noncircularity on the dynamic behaviors of particles in a disformal rotating black-hole spacetime , 2021, Science China Physics, Mechanics & Astronomy.

[18]  Y. Zou,et al.  Constraining rotating black hole via curvature radius with observations of M87* , 2021, 2108.02415.

[19]  S. Alexeyev,et al.  Black Hole Shadows Constrain Extended Gravity , 2021, Journal of Experimental and Theoretical Physics.

[20]  Jiliang Jing,et al.  Polarized image of a Schwarzschild black hole with a thin accretion disk as photon couples to Weyl tensor , 2021, The European Physical Journal C.

[21]  Z. Chang,et al.  The observer-dependent shadow of the Kerr black hole , 2021, Journal of Cosmology and Astroparticle Physics.

[22]  Jiliang Jing,et al.  Kerr black hole shadows in Melvin magnetic field with stable photon orbits , 2021, Physical Review D.

[23]  C. Herdeiro,et al.  Shadows and lensing of black holes immersed in strong magnetic fields , 2021, Physical Review D.

[24]  Jiliang Jing,et al.  Test of a model coupling of electromagnetic and gravitational fields by using high-frequency gravitational waves , 2021, Science China Physics, Mechanics & Astronomy.

[25]  V. Gurzadyan,et al.  Black hole shadow to probe modified gravity , 2021, 2101.08261.

[26]  Sh. Khlghatyan,et al.  Black hole shadow to probe modified gravity , 2021, The European Physical Journal Plus.

[27]  Jiliang Jing,et al.  Image of a regular phantom compact object and its luminosity under spherical accretions , 2020, Classical and Quantum Gravity.

[28]  Jiliang Jing,et al.  Holographic insulator/superconductor phase transitions with excited states , 2020, Science China Physics, Mechanics & Astronomy.

[29]  P. Joshi,et al.  Shadow of nulllike and timelike naked singularities without photon spheres , 2020, 2009.07487.

[30]  Jiliang Jing,et al.  Shadow of a disformal Kerr black hole in quadratic DHOST theories , 2020, 2009.07508.

[31]  Hai-Qing Zhang,et al.  Influence of quintessence dark energy on the shadow of black hole , 2020, The European Physical Journal C.

[32]  Tao Zhu,et al.  Shadows of Sgr A∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{*}$$\end{document} black hole surrounded by superfl , 2020, The European Physical Journal C.

[33]  Hongbao Zhang,et al.  Shadows and photon spheres with spherical accretions in the four-dimensional Gauss–Bonnet black hole , 2020, The European Physical Journal C.

[34]  Jiliang Jing,et al.  Polarization effects in Kerr black hole shadow due to the coupling between photon and bumblebee field , 2020, Journal of High Energy Physics.

[35]  P. Joshi,et al.  Shadow of a naked singularity without photon sphere , 2020, 2004.06525.

[36]  Bin Chen,et al.  Shadow of a spinning black hole in an expanding universe , 2020, Physical Review D.

[37]  和徳 秋山,et al.  Event Horizon Telescopeの初期成果 , 2020 .

[38]  C. Herdeiro,et al.  Lensing and shadow of a black hole surrounded by a heavy accretion disk , 2019, Journal of Cosmology and Astroparticle Physics.

[39]  Jiliang Jing,et al.  Effect of gravitational wave on shadow of a Schwarzschild black hole , 2019, The European Physical Journal C.

[40]  Jiliang Jing,et al.  Shadow of a rotating squashed Kaluza-Klein black hole , 2019, Journal of High Energy Physics.

[41]  U. Yajnik,et al.  Evolution of black hole shadow in the presence of ultralight bosons , 2019, Physics Letters B.

[42]  P. Salucci,et al.  Black hole surrounded by a dark matter halo in the M87 galactic center and its identification with shadow images , 2019, Physical Review D.

[43]  R. Konoplya Shadow of a black hole surrounded by dark matter , 2019, Physics Letters B.

[44]  Jiliang Jing,et al.  Shadow of a Schwarzschild black hole surrounded by a Bach–Weyl ring , 2019, The European Physical Journal C.

[45]  B. Singh,et al.  Shadow and deflection angle of rotating black hole in asymptotically safe gravity , 2019 .

[46]  R. Mann,et al.  Curvature radius and Kerr black hole shadow , 2019, Journal of Cosmology and Astroparticle Physics.

[47]  Daniel C. M. Palumbo,et al.  First M87 Event Horizon Telescope Results. V. Physical Origin of the Asymmetric Ring , 2019, The Astrophysical Journal.

[48]  Daniel C. M. Palumbo,et al.  First M87 Event Horizon Telescope Results. VI. The Shadow and Mass of the Central Black Hole , 2019, The Astrophysical Journal.

[49]  Rahul Kumar,et al.  Black Hole Parameter Estimation from Its Shadow , 2018, The Astrophysical Journal.

[50]  R. Mann,et al.  Intrinsic curvature and topology of shadows in Kerr spacetime , 2018, Physical Review D.

[51]  R. Mann,et al.  Shadow and deflection angle of rotating black holes in perfect fluid dark matter with a cosmological constant , 2018, Physical Review D.

[52]  S. Yazadjiev,et al.  On the shadow of rotating traversable wormholes , 2018, The European Physical Journal C.

[53]  C. Herdeiro,et al.  Shadows of exact binary black holes , 2018, Physical Review D.

[54]  Zhaoyi Xu,et al.  Black hole shadow of Sgr A* in dark matter halo , 2018, Journal of Cosmology and Astroparticle Physics.

[55]  G. Bisnovatyi-kogan,et al.  Black hole shadow in an expanding universe with a cosmological constant , 2018, Physical Review D.

[56]  R. Shaikh Shadows of rotating wormholes , 2018, Physical Review D.

[57]  R. Narayan,et al.  Shadows of spherically symmetric black holes and naked singularities , 2018, Monthly Notices of the Royal Astronomical Society.

[58]  Jiliang Jing,et al.  Chaotic shadow of a non-Kerr rotating compact object with quadrupole mass moment , 2018, Physical Review D.

[59]  C. Herdeiro,et al.  Shadows and strong gravitational lensing: a brief review , 2018, General Relativity and Gravitation.

[60]  Ernesto F. Eiroa,et al.  Shadow cast by rotating braneworld black holes with a cosmological constant , 2017, 1711.08380.

[61]  Jiliang Jing,et al.  Shadows of Bonnor black dihole by chaotic lensing , 2017, 1710.07172.

[62]  N. Tsukamoto Black hole shadow in an asymptotically-flat, stationary, and axisymmetric spacetime: The Kerr-Newman and rotating regular black holes , 2017, 1708.07427.

[63]  Jiliang Jing,et al.  Shadow casted by a Konoplya-Zhidenko rotating non-Kerr black hole , 2017, 1707.09451.

[64]  A. Wittig,et al.  Black Hole Shadows and Invariant Phase Space Structures , 2017, 1705.07061.

[65]  C. Herdeiro,et al.  Fundamental photon orbits: Black hole shadows and spacetime instabilities , 2017, 1705.05461.

[66]  C. Herdeiro,et al.  Chaotic lensing around boson stars and Kerr black holes with scalar hair , 2016, 1609.01340.

[67]  Jiliang Jing,et al.  Strong gravitational lensing by a Konoplya-Zhidenko rotating non-Kerr compact object , 2016, 1609.00802.

[68]  L. Rezzolla,et al.  New method for shadow calculations: Application to parametrized axisymmetric black holes , 2016, 1607.05767.

[69]  S. Dastan,et al.  Shadow of a charged rotating black hole in f(R) gravity , 2016, The European Physical Journal Plus.

[70]  Yang Huang,et al.  Double shadow of a regular phantom black hole as photons couple to the Weyl tensor , 2016, 1606.04634.

[71]  C. Herdeiro,et al.  Astrophysical imaging of Kerr black holes with scalar hair , 2016, 1606.04246.

[72]  C. Herdeiro,et al.  Shadows of Kerr black holes with and without scalar hair , 2016, 1605.08293.

[73]  A. Abdujabbarov,et al.  Shadow of rotating regular black holes , 2016, 1604.03809.

[74]  Jake O. Shipley,et al.  Binary black hole shadows, chaotic scattering and the Cantor set , 2016, 1603.04469.

[75]  R. Konoplya,et al.  Detection of gravitational waves from black holes: Is there a window for alternative theories? , 2016, 1602.04738.

[76]  Zilong Li,et al.  Shadow of a dressed black hole and determination of spin and viewing angle , 2015, 1511.00086.

[77]  C. Herdeiro,et al.  Shadows of Kerr Black Holes with Scalar Hair. , 2015, Physical review letters.

[78]  A. Abdujabbarov,et al.  Energetics and optical properties of 6-dimensional rotating black hole in pure Gauss–Bonnet gravity , 2015, 1508.00331.

[79]  O. Tsupko,et al.  Influence of a plasma on the shadow of a spherically symmetric black hole , 2015, 1507.04217.

[80]  O. Sarbach,et al.  Shadow of a naked singularity , 2015, 1505.07017.

[81]  L. Rezzolla,et al.  A coordinate-independent characterization of a black hole shadow , 2015, 1503.09054.

[82]  N. W. Taylor,et al.  What does a binary black hole merger look like? , 2014, 1410.7775.

[83]  C. Lammerzahl,et al.  Photon Regions and Shadows of Kerr-Newman-NUT Black Holes with a Cosmological Constant , 2014, 1403.5234.

[84]  S. Yazadjiev,et al.  Possible imprints of cosmic strings in the shadows of galactic black holes , 2013, 1311.1353.

[85]  Yu-Xiao Liu,et al.  Observing the shadow of Einstein-Maxwell-Dilaton-Axion black hole , 2013, 1311.4251.

[86]  T. Johannsen PHOTON RINGS AROUND KERR AND KERR-LIKE BLACK HOLES , 2013, 1501.02814.

[87]  C. Bambi,et al.  Measuring the Kerr spin parameter of regular black holes from their shadow , 2013, 1309.1606.

[88]  A. Abdujabbarov,et al.  Shadow of rotating non-Kerr black hole , 2013 .

[89]  S. Yazadjiev,et al.  Shadow of a rotating traversable wormhole , 2013, 1307.7647.

[90]  L. Amarilla,et al.  Shadow of a Kaluza-Klein rotating dilaton black hole , 2013, 1301.0532.

[91]  N. Sugiyama,et al.  Shadows of multi-black holes: Analytic exploration , 2012, 1208.0635.

[92]  T. Harada,et al.  Can we distinguish between black holes and wormholes by their Einstein ring systems , 2012, 1207.0047.

[93]  L. Amarilla,et al.  Shadow of a rotating braneworld black hole , 2011, 1112.6349.

[94]  N. Sugiyama,et al.  Shadows of colliding black holes , 2011, 1106.2425.

[95]  L. Amarilla,et al.  Null geodesics and shadow of a rotating black hole in extended Chern-Simons modified gravity , 2010, 1005.0607.

[96]  K. Maeda,et al.  Measurement of the Kerr Spin Parameter by Observation of a Compact Object's Shadow , 2009, 0904.3575.

[97]  Katherine Freese,et al.  Apparent shape of super-spinning black holes , 2008, 0812.1328.

[98]  Rohta Takahashi,et al.  Shapes and Positions of Black Hole Shadows in Accretion Disks and Spin Parameters of Black Holes , 2004, astro-ph/0405099.

[99]  A. Vries The apparent shape of a rotating charged black hole, closed photon orbits and the bifurcation set A 4 , 2000 .

[100]  H. Falcke,et al.  Viewing the Shadow of the Black Hole at the Galactic Center , 1999, The Astrophysical journal.

[101]  Subrahmanyan Chandrasekhar,et al.  The Mathematical Theory of Black Holes , 1983 .

[102]  Jean-Pierre Luminet,et al.  Image of a spherical black hole with thin accretion disk. , 1979 .

[103]  J. Synge The Escape of Photons from Gravitationally Intense Stars , 1966 .

[104]  Daniel C. M. Palumbo,et al.  First Sagittarius A* Event Horizon Telescope Results. II. EHT and Multi-wavelength Observations, Data Processing, and Calibration , 2023, 2311.08679.

[105]  Daniel C. M. Palumbo,et al.  First Sagittarius A* Event Horizon Telescope Results. I. The Shadow of the Supermassive Black Hole in the Center of the Milky Way , 2023, 2311.08680.

[106]  UvA-DARE ( , 2022 .

[107]  A. Chael,et al.  Event Horizon Telescope Results . IV . Imaging the Central Supermassive Black Hole , 2019 .

[108]  Kevin A. Dudevoir,et al.  Event Horizon Telescope Results . I . the Shadow of the Supermassive Black Hole , 2019 .

[109]  Daniel C. M. Palumbo,et al.  First M87 Event Horizon Telescope Results. II. Array and Instrumentation , 2019 .

[110]  Jeff Hecht,et al.  Event horizon , 2011, Nature.

[111]  A de Vries The apparent shape of a rotating charged black hole, closed photon orbits and the bifurcation set A4 , 2000 .

[112]  J. Bardeen Timelike and null geodesics in the Kerr metric. , 1973 .

[113]  Daniel C. M. Palumbo,et al.  First M87 Event Horizon Telescope Results. III. Data Processing and Calibration , 2019, The Astrophysical Journal.