A simple calculation of inelastic mean free path and stopping power for 50 eV-50 keV electrons in solids

Inelastic electron scattering is calculated by means of a simplified model of the generalised oscillator strength density distribution of an atomic or solid target. The parameters of the model are a limited set of resonance energies (partial mean ionisation potentials) and oscillator strengths. Methods to estimate these parameters, involving a fit of the partial mean ionisation potentials to the empirical atomic mean ionisation potential, are described. The valence electron partial mean ionisation potential may be determined from the dielectric energy loss function, the local plasma approximation, or empirically. Good agreement with experiment and with recent calculations of stopping power and inelastic mean free path is obtained in the electron energy range 50 eV-50 keV.

[1]  Burton L. Henke,et al.  Ultrasoft-X-Ray Reflection, Refraction, and Production of Photoelectrons (100-1000-eV Region) , 1972 .

[2]  M. Seah Distinction between adsorbed monolayers and thicker layers in Auger electron spectroscopy , 1973 .

[3]  U. Bäverstam,et al.  Analysis of the electron transport in conversion electron Mössbauer spectroscopy (CEMS) , 1978 .

[4]  M. Gryziński,et al.  Classical Theory of Atomic Collisions. I. Theory of Inelastic Collisions , 1965 .

[5]  H. Bethe Bremsformel für Elektronen relativistischer Geschwindigkeit , 1932 .

[6]  Helmut Kanter,et al.  Slow-Electron Mean Free Paths in Aluminum, Silver, and Gold , 1970 .

[7]  R. Leckey,et al.  An analytical expression for the calculation of electron mean free paths in solids , 1981 .

[8]  W. Spicer,et al.  Photoemission Studies of the Noble Metals. I. Copper , 1969 .

[9]  D. Liljequist Simplified models for the Monte Carlo simulation of energy distributions of keV electrons transmitted or back-scattered in various solids , 1978 .

[10]  A. Akkerman,et al.  Mean Free Paths by Inelastic Interactions, Stopping Powers, and Energy Straggling for Electrons of Energies up to 20 ke V in Various Solids , 1978 .

[11]  C. Nordling,et al.  Determination of the electron escape depth in gold by means of ESCA , 1970 .

[12]  David B. Wittry,et al.  X-ray continuum from thick elemental targets for 10-50-keV electrons , 1974 .

[13]  D. Lin,et al.  Photoionization cross sections, electron‐impact inverse mean free paths, and stopping powers for each subshell of silvera) , 1980 .

[14]  R. H. Ritchie,et al.  Electron inelastic mean free paths and energy losses in solids: I. Aluminum metal , 1979 .

[15]  E. J. Williams The Straggling of β -Particles , 1929 .

[16]  J. Tracy Abstract: Electron escape depths in aluminum , 1974 .

[17]  P. W. Palmberg,et al.  Auger Electron Spectroscopy of fcc Metal Surfaces , 1968 .

[18]  Thomas Anderson Callcott,et al.  Volume and surface photoemission processes from plasmon resonance fields , 1975 .

[19]  J. Young PENETRATION OF ELECTRONS IN ALUMINUM OXIDE FILMS , 1956 .

[20]  D. C. Jackson,et al.  A model for the Auger electron spectroscopy of systems exhibiting layer growth, and its application to the deposition of silver on nickel , 1973 .

[21]  S. I. Raider,et al.  Electron mean escape depths from x−ray photoelectron spectra of thermally oxidized silicon dioxide films on silicon , 1975 .

[22]  J. Hubbard The Dielectric Theory of Electronic Interactions in Solids , 1955 .

[23]  R. H. Ritchie Plasma Losses by Fast Electrons in Thin Films , 1957 .

[24]  R. Shimizu,et al.  A Monte Carlo approach to the direct simulation of electron penetration in solids , 1976 .

[25]  C. Nordling,et al.  Escape Depths of X-ray Excited Electrons , 1972 .

[26]  A. Špalek Energy and angular distributions of electrons emitted from spectrometer sources: Monte Carlo calculations , 1982 .

[27]  R. H. Ritchie,et al.  Electron inelastic mean free paths and energy losses in solids II: Electron gas statistical model☆☆☆ , 1979 .

[28]  J. D. Garcia Ejected electron distributions. , 1969 .

[29]  K. Murata,et al.  Monte Carlo simulation of 1–10‐KeV electron scattering in a gold target , 1981 .

[30]  T. Huen,et al.  Photoemission from aluminum , 1971 .

[31]  H. Fitting,et al.  Transmission, energy distribution, and SE excitation of fast electrons in thin solid films , 1974 .

[32]  R. Sternheimer,et al.  The density effect for ionization loss in materials , 1952 .

[33]  C. Powell Attenuation lengths of low-energy electrons in solids , 1974 .

[34]  M. C. Cox,et al.  A versatile atomic number correction for electron-probe microanalysis , 1978 .

[35]  W. E. Spicer,et al.  Electronic Structure of Amorphous Si from Photoemission and Optical Studies , 1972 .

[36]  S. Okayama,et al.  Penetration and energy-loss theory of electrons in solid targets , 1972 .

[37]  B. Gruzza,et al.  Backscattering spectra of medium energy electrons , 1980 .

[38]  John J. Quinn,et al.  Range of Excited Electrons in Metals , 1962 .

[39]  R. A. Ferrell Theory of Positron Annihilation in Solids , 1956 .

[40]  W. Spicer,et al.  Observation of a Band of Silicon Surface States Containing One Electron Per Surface Atom , 1972 .